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Motivation: manifold regularization

Recall that a common objective in machine learning is to minimize a
certain loss for the given training dataset D to train a target model f :

min
f

L (f,D) + α‖f‖l + γ‖f‖I

where blue terms are optional regularizes: α‖f‖l is commonly referred
as generalized Tikhonov regularization (e.g. weight decay), γ‖f‖I is
manifold regularization.

At a high level, manifold regularization exploits the geometry of D
and smoothness of f to constrain the model that should be learned.

A common assumption is that similar instances have similar predic-
tions.



Motivation: manifold regularization

Several examples:

Semi supervised learning

E(Θ) =

l
∑

n=1

L (f(xn;Θ), yn) + γ

N
∑

n,m=1

wnm(f(xn;Θ)− f(xm;Θ))2.

Nonlinear dimensionality reduction

E(Z) =

N
∑

n,m=1

(

wnm‖zn − zm‖
2 + αe−‖zn−zm‖2

)



Why Decision Trees?

Widespread usage – successfully used as a standalone predictor [6]
or as a building block for popular ensemble frameworks:
XGBoost [9], Random Forest [3], etc.

Part of the winning solutions in kaggle competitions:
https://www.kaggle.com/code/sudalairajkumar/winning-solutions-of-kaggle-competitions/notebook

Numerous successful use cases:

COVID-19 spread prediction as a time series analysis
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9251895/

Financial organizations: https://www.youtube.com/watch?v=fiSfB74yvlk

Recommendation systems (e.g. ranking problems)
. . .

https://www.kaggle.com/code/sudalairajkumar/winning-solutions-of-kaggle-competitions/notebook
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9251895/
https://www.youtube.com/watch?v=fiSfB74yvlk


Why Decision Trees?

Interpretability – input follows a unique root-to-leaf path:

Figure: Example of a (hypothetical) decision tree (source: [1]).
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Overview of Tree Alternating Optimization (TAO)
algorithm
M. Carreira-Perpiñán, 2022; M. Carreira-Perpiñán and P. Tavallali, 2018

Given a training set {(xn,yn)}
N
n=1

T: R
D → R – tree predictive mapping with parameters

Θ = {θi}nodes
Assume a tree structure T is given. Consider the problem:

E(Θ) =
N
∑

n=1

L(yn,T(xn;Θ)) + α
∑

i∈N

φ(θi)

Tree structure is fixed (as in neural nets) and we optimize over Θ.
The problem is NP-hard [10]!
Separability condition [6]: Consider any pair of nodes i and j. Fix
the parameters of all other nodes (Θrest). If nodes i and j are not
descendants of each other, then E(Θ) can be rewritten as:

E(Θ) = Ei(θi) + Ej(θj) + Erest(Θrest)

i.e., non-descendant nodes can be optimized independently. Theorem
extends beyond 2 nodes!



TAO: separability of nodes

Any set of non-descendant nodes of a tree can be optimized
independently:

Fixed

Key idea: fix one part of the tree and optimize over another



TAO: separability of nodes

Any set of non-descendant nodes of a tree can be optimized
independently:

Ri–reduced set

Fixed

Key idea: fix one part of the tree and optimize over another

Initial Θ = {θi}nodes are random

The reduced set Ri contains the training instances that reach node i.



TAO: learning leaves

A set of non-descendant nodes are all the leaves. Learning the parame-
ters of one leaf is given by the optimization of E(Θ) over θi:

min
θi

Ei(θi) =
∑

n∈Ri

L(yn,gi(xn;θi)) + αφi(θi).

Each leaf i has a predictor function gi(x;θi): R
D → R

K that produces
the actual output. Therefore, solving the reduced problem over a leaf i
amounts to fitting the leaf’s predictor gi to the instances in its reduced
set to minimize the original loss (e.g. squared error).



TAO: learning internal nodes

f2(x;θ2)

T4(x;Θ4) T5(x;Θ5)

left right

fi(x;θi): R
D → {left, right} is a decision function in node i which

sends instance xn to the corresponding child of i.
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SSL: motivation

ML use is rapidly growing→ as is the need for data labeling/annotation

. . . but manually labeling data is expensive!

Unlabeled data are usually cheap and easy to get

Unlabeled data contain useful information that can improve our model

Semi-supervised learning (SSL) seeks to train a machine learning
model by leveraging a small percentage of labeled data and much larger
sample of unlabeled data.



LapTAO: problem formulation

Consider dataset D = Dl ∪ Du: Dl = {xn, yn}
l
n=1 is the labeled data,

Du = {xn}
N
n=l+1 is unlabeled data, and l << N .
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LapTAO: problem formulation

Consider dataset D = Dl ∪ Du: Dl = {xn, yn}
l
n=1 is the labeled data,

Du = {xn}
N
n=l+1 is unlabeled data, and l << N .

T : RD → R – tree predictive mapping with parameters Θ = {θi}nodes
Then, our goal is to minimize the following regularized objective:

E(Θ) =
l∑

n=1

(T (xn;Θ)− yn)
2 + α φ(Θ) + γ

N∑

n,m=1

wnm (T (xn;Θ)− T (xm;Θ))2

wnm are the elements of the similarity matrix W (i.e., neighborhood
graph, affinity matrix) [2, 13]

φ(·) is the regularization penalty such as ‖·‖1
γ,α are regularization hyperparameters

Non-differentiable and non-convex problem due to T (·)!



LapTAO: constrained reformulation

We apply the idea of MAC [7]: introduce a new variable z for each
training instance and consider the constrained problem:

min
z1,...,zN ,Θ

l
∑

n=1

(zn − yn)
2 + α φ(Θ) + γ

N
∑

n,m=1

wnm(zn − zm)2

s.t. zn = T (xn;Θ) n = 1, . . . , N.



LapTAO: constrained reformulation

We apply the idea of MAC [7]: introduce a new variable z for each
training instance and consider the constrained problem:

min
z1,...,zN ,Θ

l
∑

n=1

(zn − yn)
2 + α φ(Θ) + γ

N
∑

n,m=1

wnm(zn − zm)2

s.t. zn = T (xn;Θ) n = 1, . . . , N.

Denote y = [y1, y2, . . . , yl, 0, 0, . . . ]
T ∈ R

N , as the augmented ground
truth vector

Introduce diag matrix J = diag(1, . . . , 1, 0, . . . , 0) ∈ R
N×N with the

first l diagonal entries equal to 1 and the rest 0

Denote z = [z1, . . . , zN ]T and t(X;Θ) = [T (x1;Θ), . . . , T (xN ;Θ)]T

where X = (x1, . . . ,xN )

Introduce graph Laplacian L = D−W where diagonal matrix
D ∈ R

N×N with entries dnn =
∑N

m=1 wnm



LapTAO: constrained reformulation

We apply the idea of MAC [7]: introduce a new variable z for each
training instance and consider the constrained problem:

min
z1,...,zN ,Θ

l
∑

n=1

(zn − yn)
2 + α φ(Θ) + γ

N
∑

n,m=1

wnm(zn − zm)2

s.t. zn = T (xn;Θ) n = 1, . . . , N.





y

Can be rewritten as:

min
z,Θ

(z − y)TJ (z− y) + α φ(Θ) + γ zTL z

s.t. z = t(X;Θ).



LapTAO: solution

Apply augmented Lagrangian [11] which defines a new, unconstrained
optimization problem:

min
z,Θ

(z−y)TJ (z−y)+α φ(Θ)+γ zTL z−λT (z−t(X;Θ))+µ‖z− t(X;Θ)‖
2

λ ∈ R
N are the estimates of Lagrange multipliers. Optimizing this

for fixed µ > 0 produces the sequence of (zµ, tµ(X;Θ)) and as
µ→∞, we force the minimizer to be in the feasible region for the
constrained problem.



LapTAO: solution

Apply augmented Lagrangian [11] which defines a new, unconstrained
optimization problem:

min
z,Θ

(z−y)TJ (z−y)+α φ(Θ)+γ zTL z−λT (z−t(X;Θ))+µ‖z− t(X;Θ)‖
2

λ ∈ R
N are the estimates of Lagrange multipliers. Optimizing this

for fixed µ > 0 produces the sequence of (zµ, tµ(X;Θ)) and as
µ→∞, we force the minimizer to be in the feasible region for the
constrained problem.

Finally, we apply alternating optimization to minimize above
objective over:

z a.k.a “Label–step”
t(X;Θ) a.k.a “Tree–step”



Label–step: optimizing over z given fixed t(X;Θ)

The objective is a quadratic function and minimizer is obtained by
solving the linear system:

min
z

(z− y)TJ (z − y) + γ zTL z− λ
T (z− t(X;Θ)) + µ‖z− t(X;Θ)‖2 ⇒

Az = Jy + µt(X;Θ) +
1

2
λ



Label–step: optimizing over z given fixed t(X;Θ)

The objective is a quadratic function and minimizer is obtained by
solving the linear system:

min
z

(z− y)TJ (z − y) + γ zTL z− λ
T (z− t(X;Θ)) + µ‖z− t(X;Θ)‖2 ⇒

Az = Jy + µt(X;Θ) +
1

2
λ

A = J+ µI+ γL is a positive definite matrix. Moreover, A is a
sparse matrix if graph Laplacian L is sparse.

The “label–step” can be interpreted as “approximating” the labels
(for Du) using the graph Laplacian and predictions obtained from
the current tree (i.e., label smoothing or label propagation)



Tree–step: optimizing over Θ given fixed z

The problem reduces to a regression fit of a tree:

min
Θ

µ‖z− t(X;Θ)‖
2
+ α φ(Θ)− λ

T (z− t(X;Θ))⇔

min
Θ

∥

∥

∥

∥

(

z−
1

2µ
λ

)

− t(X;Θ)

∥

∥

∥

∥

2

+
α

µ
φ(Θ).

using (z− 1
2µλ) as labels
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∥

∥

∥
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current estimates of the labels



Tree–step: optimizing over Θ given fixed z

The problem reduces to a regression fit of a tree:

min
Θ

µ‖z− t(X;Θ)‖
2
+ α φ(Θ)− λ

T (z− t(X;Θ))⇔

min
Θ

∥

∥

∥

∥

(

z−
1

2µ
λ

)

− t(X;Θ)

∥

∥

∥

∥

2

+
α

µ
φ(Θ).

using (z− 1
2µλ) as labels

Intuitively, this step can be understood as fitting a tree with the
current estimates of the labels

Potentially, any decision tree learning algorithm can be applied:
CART [4], C5.0 [12], etc.

We solve this using Tree Alternating Optimization (TAO) algorithm:
supports warm start, guarantees monotonic decrease of the above
objective (for convergence) [14].



LapTAO: the final algorithm

input labeled set Dl = {xn, yn}
l
n=1

unlabeled set Du = {xn}
N
n=l+1;

penalty parameters: α, γ;
µ schedule: µ0, . . . , µmax;
graph Laplacian L = D−W;

initialization:
λ← 0 (initialize Lagrange multipliers);
z0 ← solve the “Label–step” with µ = 0;
t(·;Θ)← fit a tree to ({xn}

N
n=1, z0);

for µ = µ0 < µ1 < µ2 < · · · < µmax;
“Label–step”: z← solve the linear system;
“Tree–step”: t(·;Θ)← use TAO to fit the tree;
Lagrange multipliers step: λ← λ− µ(z− t(·;Θ));

end for
return t(·;Θ)



Experiments: setup

As our main model, we consider oblique trees, having hyperplane
decision functions “go to right if θT

i x ≥ 0”. In this case, TAO uses
LIBLINEAR to solve the linear binary classification problem at each
decision node.

Each leaf i outputs a constant value ci

We apply ℓ1 penalty on tree node parameters to encourage sparsity
and hyperparameter α controls the sparsity level.

We use the fixed validation set (1% of train data) to explore
hyperparameters: γ, α, etc.

# of TAO iterations = 15, # of LapTAO iterations = 20.

µ0 = 0.001 multiplied by 1.5 after each LapTAO iteration.

W is obtained from Entropic affinities with perplexity of K.



Experiments: toy 2D

ground truth oracle tree on labeled data LapTAO (ours)

E = 0.0% E = 4.5% E = 23.46% E = 9.07%
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Experiments: performance
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Experiments: interpretability

An example tree with α = 10 and Etest = 3.9%.
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Experiments: interpretability

An example tree with α = 1 and Etest = 2.1%.

1

-1  0  12

4

bag (135) 9

shirt (4355) bag (4677)

5

10

bag (323) shirt (959)

bag (819)

3

6

shirt (169) bag (13)

7

shirt (525) 15

boot (5999) bag (26)
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Overview

Nonlinear embeddings (NLE), such as t-SNE, are widely used DR
methods.

Recall that such DR methods do not naturally define an out-of-sample
mapping, rather they directly learn a low-dimensional projection for
each training point.

We consider the problem of learning interpretable out-of-sample map-
pings for NLE.



Overview

Why interpreting a projection mapping matters?

Low-dimensional embeddings may not be a faithful projection of the
original, high-dimensional data:

1 The result depends in an obscure way on the objective function and on
hyperparameters;

2 The resulting embeddings may give a misleading view of the data, e.g.
t-SNE has a strong tendency to find clusters where none exist [5];

Augmenting the t-SNE embedding with an interpretable out-of-sample
mapping allows one to understand how the high-dimensional input
instances are projected to the embedding and understand whether
that makes sense.



What mapping should we use?

We argue for the use of sparse oblique decision trees as an out-of-
sample mapping;

Trees are considered to be interpretable models;

Sparse oblique trees strike a good tradeoff between accuracy and in-
terpretability which can be controlled via a hyperparameter.

They can make full use of any and all features of an instance.



Jointly learning an optimal tree and embedding

Consider the elastic embedding objective function:

E(Z) =
N
∑

n,m=1

(

wnm‖zn − zm‖
2 + αe−‖zn−zm‖2

)

Call the resulting embeddings z the free embedding. If we want an
out-of-sample mapping F so we can project new points, then z = F(x)
by definition and we have a parametric embedding objective function:

E(F) =
N
∑

n,m=1

(

wnm‖F(xn)− F(xm)‖2 + αe−‖F(xn)−F(xm)‖2
)

+ λφ(F)

Not easy to optimize since F is non-differentiable and non-convex
mapping (a tree)!



Jointly learning an optimal tree and embedding

Solution: use the method of auxiliary coordinates (MAC) [7, 8].
Consider the following equivalent constrained problem with
“auxiliary coordinates” Z:

min
Z,F

E(Z) + λφ(F) s.t. Z = F(X)

We solve this using a penalty method. We describe the quadratic
penalty method for simplicity, but in the experiments we use the
augmented Lagrangian. This defines a new, unconstrained objective
function:

min
Z,F

E(Z) + λφ(F) + µ‖Z− F(X)‖2. (1)



Jointly learning an optimal tree and embedding

Finally, we optimize (1) by alternating optimization over Z and F:

Over Z, eq. (1) is the original embedding objective E but with a
quadratic regularization term on Z:

min
Z

E(Z) + µ‖Z− F(X)‖2.

Solution: off-the-shelf algorithm to optimize the original embedding
(e.g. t-SNE) with a minor modification to handle the additional quadratic
term.
Over F, eq. (1) reduces to a regression fit of a tree which we solve
using the Tree Alternating Optimization (TAO) [14]:

min
F

‖Z− F(X)‖2 +
λ

µ
φ(F)

The ability of the TAO algorithm to take an initial tree and improve
over it is essential here to make sure that the step over F improves
over the previous iteration, and to be able to use warm-start to speed
up the computation.



Experiments

free embedding direct fit tree embedding (ours) learning curves
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Results on 20-newsgroups dataset: 6 classes, tf-idf statistics on
unigrams and bigrams as features (1000 features in total).

We used elastic embedding to produce the free embedding.

Direct fit trains an oblique tree (using TAO) directly to a free
embedding, i.e. it uses free embedding as a label.

The first iteration (µ = 0) in learning curves (left plot) represents a
direct fit. Our proposed approach (tree embedding) improves over
this baseline (see iterations).



Experiments
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Conclusion

We have shown how to formulate a DT learning problem within
manifold regularization framework

This type of regularization appears in a range of machine learning
problems

The resulting problems are typically intractable to solve directly and
we proposed efficient iterative algorithm to solve it.

It is based on reformulation of the problem and decomposing it into
two much simpler problems: fitting a tree and solving the step over
coordinates (e.g. via linear system).

Experimental results demonstrate that the algorithm can train
accurate and interpretable decision trees in various scenarios.



Future work

Semi-supervised learning for forests.

Self-supervised representation learning with decision trees. The idea
is to extract hierarchical representations of an input by stacking
several layers of tree ensembles (forests).

Theoretical properties of manifold regularization with decision trees.

Approximation guarantees
Convergence



Thank you!
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Tree–step: optimizing over leaves

Fix the tree structure as well as parameters in each decision node

We assume each leaf i outputs a constant value ci

Tree prediction can be rewritten as: T (x) =
∑m

i=1 ci bi(x), where m

is the number of leaves

bi(·) ∈ {0, 1}
m with single ith element equal to 1, indicating if x ends

up in leaf i

Rewrite SSL objective over c = (c1, . . . , cm) which has an exact
solution given by another linear system:

original obj: min
T

l
∑

n=1

(T (xn)− yn)
2 + γ

N
∑

n,m=1

wnm (T (xn)− T (xm))
2
⇔

leaves only: min
c

(Bc− y)TJ (Bc− y) + γ cTBTLBc ⇒ Ac = BTJy

B = (bi(xn)) ∈ R
N×m and can be precomputed since we fix the tree

structure and parameters in all decision nodes.



Label–step: solving the linear system

A reasonable choice: Conjugate Gradients (CG) since it leverages
sparsity and supports warm start. However, better solution
exists for small–medium sized problems (<30k data points)

Observation: the matrix A = J+ µI+ γL is changed by adding µI at
each iteration.

Can we compute A−1 in O(N2) instead of O(N3)?

Denote B = J+ γL which is symmetric → calculate its
eigendecomposition B = QΛQT

Derivation of the inverse:

A−1 = (µI+B)−1 = (µI+QΛQT )−1 = (Q(µI+Λ)QT )−1 = Q(µI+Λ)−1QT

Note that µI+Λ is diagonal matrix and computing its inverse takes
O(N). Therefore, the overall computation is O(N2) at each iteration

But! Precomputing decomposition for B is still O(N3) (and destroys the sparsity)



LapTAO: computational complexity

Computational complexity

For solving large (sparse) linear system, CG iterates at most N times
and each iteration takes O(N2). However, this is significantly cheaper
than O(N3) with sparse matrices; < 30 seconds on the largest
experiment we conducted (1GB of data).
Fitting an oblique tree with TAO is upper bounded by the tree depth
times the cost of solving the logistic regression on the whole training
set [6]


	References

