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Dept. of Computer Science & Engineering
University of California, Merced

AISTATS 2022



Overview

Nonlinear embeddings (NLE), such as t-SNE, are widely used DR
methods.

Recall that such DR methods do not naturally define an out-of-sample
mapping, rather they directly learn a low-dimensional projection for
each training point.

We consider the problem of learning interpretable out-of-sample map-
pings for NLE.



Overview

Why interpreting a projection mapping matters?

Low-dimensional embeddings may not be a faithful projection of the
original, high-dimensional data:

1 The result depends in an obscure way on the objective function and on
hyperparameters;

2 The resulting embeddings may give a misleading view of the data, e.g.
t-SNE has a strong tendency to find clusters where none exist [1];

Augmenting the t-SNE embedding with an interpretable out-of-sample
mapping allows one to understand how the high-dimensional input
instances are projected to the embedding and understand whether
that makes sense.



What mapping should we use?

We argue for the use of sparse oblique decision trees as an out-of-
sample mapping;

Trees are considered to be interpretable models;

Sparse oblique trees strike a good tradeoff between accuracy and in-
terpretability which can be controlled via a hyperparameter.

They can make full use of any and all features of an instance.



Jointly learning an optimal tree and embedding

Consider the elastic embedding objective function:

E(Z) =
N
∑

n,m=1

(

wnm‖zn − zm‖2 + αe−‖zn−zm‖2
)

Call the resulting embeddings z the free embedding. If we want an
out-of-sample mapping F so we can project new points, then z = F(x)
by definition and we have a parametric embedding objective function:

E(F) =
N
∑

n,m=1

(

wnm‖F(xn)− F(xm)‖2 + αe−‖F(xn)−F(xm)‖2
)

+ λφ(F)

Not easy to optimize since F is non-differentiable and non-convex
mapping (a tree)!



Jointly learning an optimal tree and embedding

Solution: use the method of auxiliary coordinates (MAC) [2, 3].
Consider the following equivalent constrained problem with
“auxiliary coordinates” Z:

min
Z,F

E(Z) + λφ(F) s.t. Z = F(X)

We solve this using a penalty method. We describe the quadratic
penalty method for simplicity, but in the experiments we use the
augmented Lagrangian. This defines a new, unconstrained objective
function:

min
Z,F

E(Z) + λφ(F) + µ‖Z− F(X)‖2. (1)



Jointly learning an optimal tree and embedding

Finally, we optimize (1) by alternating optimization over Z and F:

Over Z, eq. (1) is the original embedding objective E but with a
quadratic regularization term on Z:

min
Z

E(Z) + µ‖Z− F(X)‖2.

Solution: off-the-shelf algorithm to optimize the original embedding
(e.g. t-SNE) with a minor modification to handle the additional quadratic
term.
Over F, eq. (1) reduces to a regression fit of a tree which we solve
using the Tree Alternating Optimization (TAO) [4]:

min
F

‖Z− F(X)‖2 +
λ

µ
φ(F)

The ability of the TAO algorithm to take an initial tree and improve
over it is essential here to make sure that the step over F improves
over the previous iteration, and to be able to use warm-start to speed
up the computation.



Experiments

free embedding direct fit tree embedding (ours) learning curves
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Results on 20-newsgroups dataset: 6 classes, tf-idf statistics on
unigrams and bigrams as features (1000 features in total).

We used elastic embedding to produce the free embedding.

Direct fit trains an oblique tree (using TAO) directly to a free
embedding, i.e. it uses free embedding as a label.

The first iteration (µ = 0) in learning curves (left plot) represents a
direct fit. Our proposed approach (tree embedding) improves over
this baseline (see iterations).



Experiments
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[2] M. Á. Carreira-Perpiñán and W. Wang. Distributed optimization of deeply nested systems.
arXiv:1212.5921, Dec. 24 2012.
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