
Softmax Tree: An Accurate, Fast Classifier When the Number of Classes Is Large

Arman Zharmagambetov, Magzhan Gabidolla and Miguel Á. Carreira-Perpiñán

Dept. Computer Science & Engineering, University of California, Merced, USA

1 Abstract
Classification problems having thousands or more classes naturally occur in

NLP, for example language models or document classification. A softmax or

one-vs-all classifier naturally handles many classes, but it is very slow at infer-

ence time, because every class score must be calculated to find the top class.

We propose the “softmax tree”, consisting of a binary tree having sparse hyper-

planes at the decision nodes (which make hard, not soft, decisions) and small

softmax classifiers at the leaves. This is much faster at inference because the

input instance follows a single path to a leaf (whose length is logarithmic on

the number of leaves) and the softmax classifier at each leaf operates on a

small subset of the classes. Although learning accurate tree-based models

has proven difficult in the past, we are able to overcome this by using a vari-

ation of a recent algorithm, tree alternating optimization (TAO). Compared to

a softmax and other classifiers, the resulting softmax trees are both more ac-

curate in prediction and faster in inference, as shown in NLP problems having

from one thousand to one hundred thousand classes.

Work supported by NSF award IIS–2007147

2 Softmax Tree (ST): motivation
A large number of classes (= K) are quite common in NLP problems:

- Language modeling: ≈171k words in the Oxford English Dictionary→
171k classes and grows as we include all forms of a word, names,

acronyms, etc.

- Website categorization given its content: ODP contains >1M website

categories. So, automatically tagging a web page will require identifying a

subset of categories relevant to it.

Traditional linear models (softmax or one-vs-all) do not scale well for these

problems:

• During inference one must compute the score or probability of (nearly) all

classes, conditional on the input instance, in order to determine the (top-n)

predicted class.

• Obvious way to speed-up – use decision trees, e.g. CART: typically

perform poorly.

Proposed model: Softmax Tree

f1(x) < 0 f1(x) ≥ 0

f2(x) < 0 f2(x) ≥ 0 f3(x) < 0 f3(x) ≥ 0

ezi

k∑
j=1

e
zj

ezi

k∑
j=1

e
zj

ezi

k∑
j=1

e
zj

ezi

k∑
j=1

e
zj

• Sparse oblique decision nodes: fi(x) = wT
i x + bi in the above figure.

• Sparse linear softmax leaves where each leaf focuses only on k ≪ K

classes (K total number of classes).

3 Softmax Tree (ST): learning
• The proposed model provides speedup of O(K

∆+k
) ≈ O(K

k
) compared to

one-vs-all while still being accurate!

• However, STs are hard to train: nonconvex, nondifferentiable,

discontinuous.

• We use Tree Alternating Optimization (TAO): non-greedy, generally finds

better optima, has shown a huge success in training various tree-based

models.

Assuming a tree structure T is given (say, binary complete of depth ∆), con-

sider the following regularized objective:

E(Θ) =
N∑

n=1

L(yn,T(xn; Θ)) + α
∑

i∈N

‖θi‖1

given a training set {(xn, yn)}N
n=1. Θ = {θi}i∈N is a set of parameters of all tree

nodes. The loss function L(y, z) is cross-entropy (TAO was originally proposed for misclassification loss).

TAO optimizes eq. (1) based on two theorems. First, eq. (1) separates over
any subset of non-descendant nodes given the remaining nodes are fixed.

All such nodes may be optimized in parallel. Second, optimizing over the pa-

rameters of a single node i simplifies to the well-defined problem over the

reduced set Ri ⊂ {1, . . . ,N} (i.e., dataset instances that reach node i). The

form of this reduced problem depends on the type of node, and can be sum-

marized in the pseudocode:

Result trained tree T(·; Θ)
input training set {(xn, yn)}N

n=1, initial tree T(·; Θ) of depth ∆
repeat

generate Ri for each node under the current T(·; Θ)
for depth d = ∆ downto 0

parfor i ∈ nodes at depth d

if i is a leaf then

Ri ← instances of the most populous k classes in Ri

θi ← fit a linear classifier (softmax) on Ri

else
generate pseudolabels yn for each point n ∈ Ri

(done by evaluating loss from left/right subtree and picking the best)

θi ← fit a weighted binary classifier

until max number of iterations

postprocessing: remove dead or pure subtrees

Practicalities:

• Dealing with zero probabilities – problematic during decision node

optimization: Pl(y|x) = 0→ infinity loss (quite possible given k ≪ K).

Possible ways to resolve: replace loss=∞ by loss=β (e.g. 100, 107) or use

0/1 loss to compute pseudolabels.

• Obtaining an initial tree: a) complete tree of depth ∆ with random

parameters (default option); b) clustering-based initialization.

4 Experiments: Document Classification

Method top-1 ∆ inf.(ms) size(GB)

RecallTree 92.64 15 0.97 0.8

one-vs-all 85.71 0 10.70 53.5

MACH 84.80 – 252.64 1.3

W
IK

I–
S

m
a
ll

(π, κ)-DS 78.02 – 10.33 0.01

ST(k=100) 77.26 7 0.33 0.03

ST(k=300) 76.86 7 0.49 0.04

ST(k=150) 75.65 8 0.52 0.05

RecallTree 94.64 6 8.42 3.4

LOMTree (93.46) (17) (0.26) –

O
D

P

one-vs-all 89.22 0 1317.58 155.7

(π, κ)-DS 86.31 – 36.41 1.0

MACH 84.55 – 684.04 1.2

ST(k=300) 81.84 9 9.87 0.1

Table 1: Results on text classification datasets. We

report the top-1 test error, maximum depth (∆), avg.

inference time per test sample (in ms) and

uncompressed model sizes (in GB). ST(k = x)

indicates our method which uses at most k classes at

each leaf. The results in brackets are taken from the

corresponding papers.

4 6 8 10 12
6

8

10

12

14

16

in
fe

re
n

c
e

ti
m

e
(m

s
)

depth (∆)

one-vs-all

one-vs-all (1300ms)

ST(k = 25)

ST(k = 50)

ST(k = 100)

ST(k = 400)

ST(k = 1k)

4 6 8 10 12
60

65

70

75

80

85

E
tr

a
in

(%
)

depth (∆)
4 6 8 10 12

86

87

88

89

90

91

92

E
te

s
t
(%

)

depth (∆)

Figure 1: Avg. inf. time tradeoff (top figure) and Top-1 errors (bottom) of the ST for

various settings of ∆ and k on the ODP dataset.

5 Experiments: Language Modeling

Method top-1/top-5 PPL(% covered) ∆ inf.(ms)

HSM-approx 92.2 / 86.5 575 (100%) 18 0.184

HSM 91.1 / 81.1 575 (100%) 18 0.421

softmax 86.9 / 79.6 217 (100%) 0 0.467

ST(k=50) 86.5 / 72.5 17 (44%) 8 0.058

ST(k=200) 86.4 / 70.6 45 (58%) 6 0.053

ST(k=800) 86.4 / 68.4 117 (77%) 4 0.066

ST*(k=800) 86.4 / 68.4 427 (100%) 4 0.066

Table 2: Like Table 1 but on PTB–language modeling task. We

also report the test Perplexity (with percentage of the covered

points) and top-5 error. “*” indicates that smoothing was

applied to replace 0 probabilities with some small epsilon and

renormalize the output.

Method top-1/top-5 PPL(% covered) ∆ inf.(ms)

HSM-appox 78.3 / 64.1 184 (100%) 18 0.097

HSM 77.7 / 63.1 184 (100%) 18 0.372

softmax 74.3 / 54.8 96 (100%) 0 0.346

ST(k=50) 75.2 / 57.3 9 (59%) 8 0.046

ST(k=200) 74.9 / 56.2 18 (70%) 6 0.067

ST(k=800) 74.5 / 55.5 33 (81%) 4 0.069

ST*(k=800) 74.5 / 55.5 145 (100%) 4 0.069

Table 3: Like Table 2, but models were trained on the output of

the recurrent neural net (LSTM).

