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1 Motivation and summary
Compressing neural nets is an active research problem and

many algorithms have been proposed that achieve signifi-

cant compression based on pruning, quantization, low-rank

decomposition, etc. However, most of these algorithms re-

quire access to the original training set. This imposes con-

siderable resources in runtime and storage—for instance,

modern image classification datasets such as ImageNet con-

tain millions of high-resolution images. In some applica-

tions, for example in-device compression, it is desirable to

do much faster (almost instant) compression.

In this work we focus on the framework of the “Learning-

Compression” (LC) algorithm [1–3] because it can be ap-

plied to potentially any kind of compression type and com-

binations thereof. The basic idea is to replace the original

loss function with an approximate, simpler loss that does

not require access to the training set. The resulting opti-

mization problem can be solved analytically or using the LC

algorithm. We show that we can still achieve significant com-

pression but much faster.
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2 Fast model compression
Assume we have a large, reference model with P parameters that has

been trained on a loss L (e.g. cross-entropy on a given training set) to

solve a task (e.g. classification). That is, w = arg minw L(w). We define

compression as finding a low-dimensional parameterization ∆(Θ) of w
in terms of Q < P parameters Θ. We seek a Θ such that its correspond-

ing model has (locally) optimal loss. We define model compression as a

constrained optimization problem:

min
w,Θ

L̃(w) s.t. w = ∆(Θ),

where L̃ is approximation of the original loss L which we define later.

Note that the original LC algorithm uses the true loss L, therefore it re-

quires access to dataset.

The decompression mapping ∆: Θ ∈ R
Q → w ∈ R

P maps a low-

dimensional parameterization to uncompressed model weights. The

compression mapping:

Π(w) = arg min
Θ

‖w−∆(Θ)‖2,

behaves as its “inverse” and appears in the C step of the LC algorithm.

Our framework includes well-known types of compression (and combi-

nations thereof), such as: pruning, quantization, low-rank compression,

etc.

3 Approximation to the loss
We approximate the original loss L using Taylor’s theorem.Assume

a given loss on a training set, e.g. the cross-entropy loss L(w) =
−
∑

n yn log f (xn;w). Then the loss function can be approximated

as:

L̃(w) = L0 + gT (w−w) +
1

2
(w−w)TH(w−w),

where L0 = L(w) is the loss value of the reference model, g its

gradient, H its Hessian and w are the weights of the reference

model (w need not be an exact minimizer, so its gradient need not

be zero). This approximation is very good near w but degrades

progressively as we go away from it. Therefore we have to expect

that the resulting solution will not be as accurate as the original

LC algorithm. But this is the price we need to pay in order to get

a fast compression.

Here, H can be the full Hessian, diagonal, block diagonal, sparse

or even zero if we use the first order approximation; here we focus

on the diagonal approximation. Then the above loss approxima-

tion takes the following form (by neglecting constant term L0):

L̃(w) =
P
∑

i=1

[

gi(wi − w i) +
1

2
hi(wi − w i)

2

]

,

where gi and hi are the elements of the gradient vector and diag-

onal elements of the Hessian, respectively.

4 Fast “Learning-Compression” (LC)
algorithm

This follows from using a penalty method (for simplicity, we de-

scribe the quadratic penalty) and alternating optimization, with

the goal of separating the machine learning part (loss L) from

the compression part (∆). This results in an algorithm that alter-

nates two generic steps while slowly driving the penalty parame-

ter µ→∞:

– L (learning) step:

min
w

P
∑

i=1

[

gi(wi − w i) +
1

2
hi(wi − w i)

2

]

+
µ

2
‖w−∆(Θ)‖2

It is a separable quadratic optimization whose solution is:

wi = (hiw i + µ∆i(θ) − gi)/(hi + µ). Note that in the origi-

nal LC algorithm this step requires access to the training set

and the neural net, which is computationally very costly (and

requires stochastic gradient descent optimization in a GPU).

Now the L step is data-independent and vastly faster.

– C (compression) step: minΘ ‖w−∆(Θ)‖2⇔ Θ = Π(w). This

means finding the best (lossy) compression of w in the ℓ2

sense. This step is identical to the original LC algorithm. It

is independent of the loss, training set and task. It can be

solved by calling a compression mapping (e.g. thresholding,

SVD, k-means, etc.) corresponding to the desired compres-

sion type.

5 Analytical solution of the optimization problem
In some particular cases the exact solution of the constrained optimization problem can be

obtained analytically (without using iterative algorithms). For example, in the case of prun-

ing [3], the optimization problem takes the form: minw

∑P
i=1

[

gi(wi − w i) +
1
2
hi(wi − w i)

2
]

s.t. ‖w‖0 ≤ κ. Its exact solution is given by picking the weights having the largest values

of αi = giw i −
1
2
hiw

2
i − g2

i /(2hi) and setting them to wi = w i − gi/hi. If g = 0 this solution

corresponds to the Optimal Brain Damage algorithm of [4].
Another example is a problem of weight binarization: minw

∑P
i=1

[

gi(wi − w i) +
1
2
hi(wi − w i)

2
]

s.t. w1, . . . ,wP ∈ {−1,+1}. The problem separates over the weights and can be solved

for each wi by enumeration (try −1 and +1 and pick the one which gives the lowest value

of the loss).

6 Experiments
The figure shows compression results (as a tradeoff curve of error vs compression level)

for the VGG-13 neural nets on CIFAR-10. Currently, Tensorflow (and some other deep

learning frameworks) are not able to provide just the diagonal of the Hessian. Therefore,

we estimate it using the Gauss-Newton approximation. As we can see the fast LC algo-

rithm is able to achieve low test error as long as we don’t compress much. The original

LC shows better results on all experiments but its runtime is about 6 hours, whereas the

fast compression runs only about 2 minutes for quantization, 1 second for pruning.
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Figure 1: Error-compression curves for VGG-13 on CIFAR-10: quantization (left), pruning (right).
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