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1 Abstract

• We consider the problem of learning interpretable out-of-sample

mappings for nonlinear embedding methods such as t-SNE.

• Recall that such DR methods do not naturally define an out-of-

sample mapping, rather they directly learn a low-dimensional pro-

jection for each training point.

• We argue for the use of sparse oblique decision trees because they

strike a good tradeoff between accuracy and interpretability which

can be controlled via a hyperparameter.

• The resulting optimization problem is difficult because decision trees

are not differentiable.

• By using an equivalent formulation of the problem, we give an algo-

rithm that can learn such a tree for any given nonlinear embedding

objective.

• We illustrate experimentally how the resulting trees provide insights

into the data beyond what a simple 2D visualization of the embed-

ding does.
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2 Proposed model and motivation

• Our proposed mapping is a sparse oblique decision tree F, which maps a

high-dimensional point x in D dimensions to a low-dimensional point z in L ≪ D

dimensions: F: x ∈ R
D → z ∈ R

L. Each leaf uses a sparse linear mapping. Such

a tree is learned by optimizing:

min
Θ

N
∑

n=1

L(yn,F(xn; Θ)) + λφ(F). (1)

• It can model nonlinear mappings using very few nodes compared to an

axis-aligned tree.

• It is especially convenient when clusters exist in the data, which can be captured

by the tree hierarchy.

• It can make full use of any and all features of an instance.

• We can control the tree complexity (no. of nodes, features, etc.) via the

regularization hyperparameter λ. This offers a convenient way to achieve a range

of explanation levels, from detailed and accurate to simple and less accurate.

3 Jointly learning an optimal tree and embedding

A nonlinear embedding method defines an objective function E(Z) over

the low-dimensional coordinates ZL×N = (z1, . . . , zN) of the training points

XD×N = (x1, . . . , xN). For example, consider the elastic embedding loss

(can also be t-SNE or any other loss):

E(Z) =

N
∑

n,m=1

(

wnm‖zn − zm‖
2 + αe

−‖zn−zm‖
2
)

Call the resulting z the free embedding. If we want an out-of-sample

mapping F so we can project new points, then z = F(x) by definition and

we have a parametric embedding objective function:

E(F) =

N
∑

n,m=1

(

wnm‖F(xn)− F(xm)‖
2 + αe

−‖F(xn)−F(xm)‖
2
)

+ λφ(F) (2)

where φ(F) is a regularization term on the mapping. Eq. (2) is not easy

to optimize since F is non-differentiable and non-convex mapping. Solu-

tion: apply the method of auxiliary coordinates (MAC) [1]. Consider the

following equivalent constrained problem with “auxiliary coordinates” Z:

min
Z,F

E(Z) + λφ(F) s.t. Z = F(X) (3)

We solve (3) using a penalty method. We describe the quadratic-penalty

method for simplicity, but in the experiments we use the augmented La-

grangian. This defines a new, unconstrained objective function:

min
Z,F

E(Z) + λφ(F) + µ‖Z − F(X)‖2
. (4)

Finally, we optimize (4) by alternating optimization over Z and F:

• Over Z, eq. (4) is the original embedding objective E but with a

quadratic regularization term on Z:

min
Z

E(Z) + µ‖Z − F(X)‖2
.

This can be easily solved by reusing an algorithm to optimize the

original embedding (t-SNE, the elastic embedding or whatever), with

a minor modification to handle the additional quadratic term.

• Over F, eq. (4) reduces to a regression fit of a tree (see eq. (1)) which

we solve using the Tree Alternating Optimization (TAO) [2]:

min
F

‖Z − F(X)‖2 +
λ

µ
φ(F).

The ability of the TAO algorithm to take an initial tree and improve

over it is essential here to make sure that the step over F improves

over the previous iteration, and to be able to use warm-start to speed

up the computation.
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4 Experiments
Free embedding Direct fit (TAO) Tree embedding (ours) Learning curves
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• Results on 20-newsgroups dataset: 6 classes, tf-idf statistics on unigrams and bigrams as features (1000

features in total).

• We used elastic embedding to produce the free embedding.

• Direct fit trains an oblique tree (using TAO) directly to a free embedding, i.e. it uses free embedding as a label.

• The first iteration (µ = 0) in learning curves (left plot) represents a direct fit. Our proposed approach (tree

embedding) improves over this baseline (see iterations).

nonzeros:8.1%

space     

government

israel    

gun       

bike      

know      

key       

com    

game   

hockey 

team   

season 

games  

play   

nonzeros:6.3%

bike       

jews       

van        

space      

chip       

thanks     

edu        

israel   

gun      

armenians

armenian 

guns     

turkish  

crime    

nonzeros:7.4%

bike    

space   

edu     

nasa    

thanks  

ride    

don know

key       

clipper   

chip      

government

law       

encryption

amendment 

nonzeros:4.8%

space     

people    

does      

american  

just      

government

nasa      

bike     

edu      

dod      

box      

let      

finally  

ride     

nonzeros:6.3%
thanks  

does    

state   

jews    

american

people  

names   

space     

like      

nasa      

just      

shuttle   

don       

orbit     

1

bhc smg

2

bh c smg
0

156

3

b h c s m g
0

118

4

b h c s m g
0

171

nonzeros:0.6%

gun     

turkish 

armenian

israel 

arabs  

israeli

5

b h c s m g
0

84

6

b h c s m g
0

69

nonzeros:0.6%

game 

games

team 

year 

com     

software

7

b h c s m g
0

193

nonzeros:0.1%

center

8

b h c s m g
0

1

9

b h c s m g
0

24

• Visualization of the tree embedding. For each decision node, we show up to top-7 features (words) which

corresponds to the largest non-zero values in the weight vector. Words with the highest positive/negative

values are responsible for sending an instance to a certain child.

• For each leaf, we show the region of its responsibility by convex hull of the mappings falling into that leaf and

provide histogram counts of classes.

• There is a clear clustering structure in the hierarchy as most of leaves focus on few classes. The hierarchy

respects class ontology by merging instances of semantically similar classes under one subtree, e.g. “g” gun

and “m” mideast (in leaves #5 and #6), whereas their locations in 2D are not next to each others.

• Leaf #8 has only one point which is clearly an outlier (several topics are discussed in one document).


