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Abstract

Semi-supervised learning seeks to learn a machine learning model when only a
small amount of the available data is labeled. The most widespread approach uses
a graph prior, which encourages similar instances to have similar predictions. This
has been very successful with models ranging from kernel machines to neural net-
works, but has remained inapplicable to decision trees, for which the optimization
problem is much harder. We solve this based on a reformulation of the problem
which requires iteratively solving two simpler problems: a supervised tree learn-
ing problem, which can be solved by the Tree Alternating Optimization algorithm;
and a label smoothing problem, which can be solved through a sparse linear sys-
tem. The algorithm is scalable and highly effective even with very few labeled
instances, and makes it possible to learn accurate, interpretable models based on
decision trees in such situations.

1 Introduction

Semi-supervised learning (SSL) is an important subfield of machine learning which has received a
lot of attention in recent years given today’s growing amount of data and widespread deployment of
machine learning systems. One of the major reasons is that SSL is applicable when labels are scarce.
This is in contrast to the traditional fully supervised learning, which requires access to a large amount
of high-quality labeled data. However, obtaining such samples is often costly, time-consuming and
sometimes even impractical. Therefore, SSL methods have received much praise in the machine
learning literature [43] and they are widely used in many applications. A common strategy in SSL
is to assume that similar instances have similar predictions, which is commonly incorporated into
an objective as a graph prior (e.g. graph Laplacian).

In this paper, we study the problem of training a decision tree model by leveraging a small percentage
of labeled data and a much larger sample of unlabeled data. Why trees? First, trees are considered
to be interpretable models, since the prediction is obtained by routing an input along a unique root-
to-leaf path, which can be reformulated as if-then rules. Second, they are widely used in a wide
spectrum of applications, such as data mining [33], computer vision [15], finance, etc. They are
typically employed as base learners in an ensemble (e.g. bagging [5] or boosting [17]). However,
they are used as standalone predictors as well. For instance, recent algorithmic advances in training
non-greedy trees have shown that oblique trees can perform competitively well in a number of tasks
and strike a good balance between accuracy and interpretability [8, 7, 18–20, 37, 39].

However, like many non-linear methods, decision trees are well known to overfit for small-sized
(labeled) data, which is the case in SSL. As an illustration, consider fig. 1, that shows a synthetic
binary classification problem in 2D. An oblique tree achieves a certain good performance when it
is provided the entire population of labeled data. But the error significantly increases if a tree is
trained on six labeled instances only (plot 3). Whereas the benefit is evident when we provide all
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Figure 1: Binary classification on 2D. Plot 1 shows the original data and corresponding class labels.
Cross markers (×, six in total) indicate the labeled points that we provide to any given SSL algorithm.
“Tree on all data” shows the decision boundary obtained by using all available labeled data, whereas
plot 3 uses only six labeled points to train a tree. Plot 4 shows the result of our SSL framework. All
trees are oblique of depth ∆ = 2.

data (six labeled and the rest are unlabeled) and properly optimize a tree within SSL framework.
In our proposed approach, we first state the objective, which consists of a supervised loss (for the
labeled data only) and a graph Laplacian regularization (also known as manifold regularization [3]).
The resulting optimization problem is long considered to be hard to solve since trees define a non-
differentiable, non-convex mapping. By reformulating the problem as a constrained optimization,
we derive an efficient and scalable iterative algorithm (section 3) which requires solving two simpler
problems at each step: a sparse linear system and a supervised tree learning problem. For the
latter, we use the Tree Alternating Optimization algorithm [8, 7], which is crucial for the success
of our approach (section 3.1). Moreover, for a special case where the tree structure as well as
the parameters in each decision node (not leaves) are fixed, we derive the exact solution given by
another linear system (section 3.3). Experimental results (section 4) show the algorithm is able to
learn accurate and interpretable decision trees even with very few labeled instances.

2 Related work

Although the literature on this topic is immense (see [43, 32]), incorporating decision trees into SSL
has received almost no attention. One possible explanation is the difficulty of the optimization prob-
lem. Most SSL methods are based on adding a graph prior (or similarity matrix) as regularization
to exploit the geometry of the underlying data distribution [3, 42, 44, 45]. Minimizing an objective
with such regularization is non-trivial when we have decision trees as a predictive model.

That said, several attempts have been made to apply SSL for trees. Levatić et al. [26] modify a
splitting criterion for recursive tree induction by taking into account unlabeled data. That is, a
splitting score for each [feature, threshold] pair consists of two parts: the traditional purity score
(e.g. Gini index) for labeled data and a “clustering” score for all available data. Tanha et al. [31]
apply a self-training framework [36] to train classification trees with labeled and unlabeled data.
Note that self-training is a generic framework that can be applied with any classifier which predicts
class probabilities. It trains a classifier iteratively where the first iteration includes only labeled data.
After that, it uses model predictions and adds the most confidently predicted instances to enrich the
amount of supervision. Another direct approach is to apply a label smoothing technique [44] to
propagate label information to all data and then fit a tree. This method has been recently reused
within the graph neural networks framework to train boosted trees [14, 23]. Finally, Kemp et al. [24]
proposed a Bayesian approach where unlabeled data assist in inferring a latent tree structure from
a distribution over trees. The limitations of this approach are that it covers classification tasks only,
and it uses Markov Chain Monte Carlo to sample from the distribution over trees, which leads to
scalability issues.
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Unlike all these methods, we attempt to directly minimize a regularized SSL objective (with a graph
prior) over the parameters of a decision tree. The method is applicable to both regression and
classification problems, and can train trees of arbitrary type (i.e., axis-aligned, oblique, etc.). In fact,
our optimization framework is generally applicable to any type of predictive functions, not just trees.

3 LapTAO: semi-supervised learning framework for decision trees

We are given the dataset D = Dl ∪ Du, where Dl = {xn, yn}
l
n=1 ⊂ R

D × R is the labeled portion
of the data, with l points, and Du = {xn}Nn=l+1 ⊂ R

D is the unlabeled portion, with N − l points.
Then our goal is to minimize the following regularized objective:

E(Θ) =

l
∑

n=1

(T (xn;Θ)− yn)
2 + α φ(Θ) + γ

N
∑

n,m=1

wnm(T (xn;Θ)− T (xm;Θ))2. (1)

Here, wnm are the weights in the affinity (similarity) matrix based on a graph on all the data pointsD,
usually a nearest-neighbor graph; T : RD → R is the tree predictive mapping, with parameters Θ =
{θi}nodes; φ(·) is a regularization penalty, such as ‖·‖

1
; and γ,α are regularization hyperparameters.

Rather than using a greedy recursive partitioning procedure (such as CART [6] or C5.0 [30]), which
does not optimize any loss function, we consider T as a parametric model with trainable weights
in each node (like fixing a neural net architecture and optimizing over its parameters). If T was
differentiable, one could optimize (1) via gradient-based methods, as can be done for neural nets [34].
Similarly, the solution is relatively straightforward to obtain if problem (1) is convex [3]. However,
solving problem (1) is non-trivial with a tree which defines a non-differentiable and non-convex
mapping. Instead, we apply the method of auxiliary coordinates [10, 11], a generic method for
optimizing nested systems.

We proceed as follows by reformulating problem (1) in an equivalent form (similar to that in [9, 39,
19] for dimensionality reduction and clustering). Introduce a new auxiliary variable zn ∈ R for each
training instance n and consider the constrained problem:

min
z1,...,zN ,Θ

l
∑

n=1

(zn − yn)
2 + α φ(Θ) + γ

N
∑

n,m=1

wnm(zn − zm)2 (2)

s.t. zn = T (xn;Θ) n = 1, . . . , N. (3)

Obviously, by putting the constraints (3) back into eq. (2), we end up with the same objective as
in (1), so these two problems are equivalent. Let us denote y = [y1, y2, . . . , yl, 0, 0, . . . ]

T ∈ R
N

the augmented ground truth vector, i.e., we put zeros in the unlabeled portion of the data. Similarly,
introduce a diagonal matrix J = diag(1, . . . , 1, 0, . . . , 0) ∈ R

N×N with the first l diagonal entries
equal to 1 and the rest to 0. Also, let the graph Laplacian be L = D −W with a diagonal matrix
D ∈ R

N×N (the degree matrix) having entries dnn =
∑N

m=1
wnm, and let W = (wnm) ∈ R

N×N

be the affinity matrix. Finally, call z = [z1, . . . , zN ]T and t(X;Θ) = [T (x1;Θ), . . . , T (xN ;Θ)]T ,
where X = (x1, . . . ,xN ). Then we can rewrite eq. (2)-(3) as follows:

min
z,Θ

(z − y)TJ (z− y) + α φ(Θ) + γ zTL z s.t. z = t(X;Θ). (4)

Now we solve this using the augmented Lagrangian method [29]. This defines a new, unconstrained
optimization problem:

min
z,Θ

(z− y)T J (z− y) + α φ(Θ) + γ zTL z− λ
T (z− t(X;Θ)) + µ‖z− t(X;Θ)‖2 (5)

where λ ∈ R
N are the estimates of the Lagrange multipliers. Optimizing this for each µ > 0

produces a sequence of (zµ, tµ(X;Θ)) and, as µ → ∞, we gradually force the minimizer to be in
the feasible set of the constrained problem. Finally, in order to minimize (5) over z and t(X;Θ) for
fixed µ, we apply alternating optimization over z and Θ:

• Label-step (optimizing over z given fixed t(X;Θ)). The objective in eq. (5) is a quadratic func-
tion and a minimizer is obtained by solving the linear system:

min
z

(z− y)TJ (z − y) + γ zTL z− λ
T (z− t(X;Θ)) + µ‖z− t(X;Θ)‖2 ⇒

Az = Jy + µt(X;Θ) +
1

2
λ

(6)
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where A = J+ µI+ γL is a positive definite matrix (see Appendix B). Moreover, A is a sparse
matrix if the graph Laplacian L is sparse, which is the case in practice if we construct W by using
a nearest neighbors graph. This allows us to solve a large scale linear system in an efficient way
(e.g. by caching a matrix factorization or using the conjugate gradient method). Intuitively, the
label-step can be interpreted as approximating the labels (for Du) using the graph Laplacian and
predictions obtained from the current tree (i.e., label smoothing).

• Tree-step (optimizing over Θ given fixed z). Problem (5) reduces to a regression fit of a tree:

min
Θ

µ‖z− t(X;Θ)‖2 + α φ(Θ)− λ
T (z− t(X;Θ))⇔

min
Θ

∥

∥

∥

∥

(

z−
1

2µ
λ

)

− t(X;Θ)

∥

∥

∥

∥

2

+
α

µ
φ(Θ).

(7)

Note that here we use (z − 1

2µ
λ) as “ground-truth” labels (not yn, which is not defined for Du

anyway). We solve this problem using the Tree Alternating Optimization (TAO) algorithm, which
we describe in section 3.1 below. Intuitively, this step can be understood as fitting a tree with the
current estimates of the labels.

Finally, the step over Lagrange multipliers is done by the update λ ← λ − µ(z − t(X;Θ)). In
summary, our algorithm alternates between solving a linear system and training a tree. After each
(label,tree)-step, we increase the penalty parameter µ, we update λ and we keep iterating until
approximate convergence or other stopping criterion (e.g. maximum number of iterations reached).
We call our algorithm LapTAO and provide detailed pseudocode in Appendix A.

Initialization for LapTAO To start our iterative algorithm, we need to obtain initial solutions
(z0, t0) for eq. (5) when µ → 0+. This is straightforward to achieve for z0, as it involves solving
the same linear system as in eq. (6) but with µ = 0 and λ = 0: (J + γL)z = Jy. This can
be considered as a non-parametric smoothing of the labels obtained by propagating (diffusing) the
ground-truth labels over all points (labeled and unlabeled) through the graph Laplacian. Although
these smoothed labels are not optimal in problem (1), which requires optimizing them jointly with
the tree, they do provide a good initialization, and it is convenient to solve the linear system exactly
for µ = 0. After that, we fit a tree using z0 as ground-truth labels (tree-step). Note that TAO
requires an initial tree (see section 3.1), which we obtain by generating a complete tree of depth ∆
(a hyperparameter) with a Gaussian random weight vector at each decision node.

Hyperparameters of LapTAO The hyperparameters are γ for the graph prior and α (sparsity)
and ∆ (depth) for the tree. They can be selected by cross-validation.

Extension to multioutput regression and classification We can extend LapTAO for multiple
outputs in a straightforward way: the label-step solves the linear system (6) for each dimension
separately and the tree-step applies TAO as usual, as it can handle a vector-valued output. For
classification, we use a one-hot encoding of the labels and consider the problem as a regression task,
as is commonly done in the decision tree literature [21] (especially for boosted trees). It is possible
to extend our framework for other losses (e.g. hinge, logistic) that may work better for classification.
This requires certain changes in the label-step and we will explore it in our future works.

Extension to models other than trees Although our focus in this paper are decision trees, the
semi-supervised learning optimization algorithm we propose is perfectly general. The model
(T (x;Θ)) appears in the algorithm in the tree-step, with the form of a regression problem hav-
ing the smoothed labels as ground-truth. Obviously, we can use other regression models, such as
random forests, gradient boosted trees, neural networks, etc. The motivation to use our approach
was the fact that trees are not differentiable, so one cannot optimize problem (1) by gradient-based
methods. But our approach has another, computational advantage: by separating terms through the
auxiliary variables z, the quadratic-cost term is confined to the label-step. For large datasets, this is
a sparse linear system, for which efficient algorithms exist. Hence, the complexity associated with
the model (tree) is linear on the dataset size (in the tree-step). This is much faster than having to
deal directly with the quadratic term and the model, as in eq. (1), whether for trees or other models.

3.1 Overview of the tree alternating optimization (TAO) algorithm

Potentially, one could apply any tree fitting algorithm to solve the tree-step in LapTAO, such as
CART [6], C5.0 [30], OC1 [28], etc. (we do show such results in Appendix E.3). But there are sev-
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eral important considerations. Firstly, from an optimization point of view, it is known that alternating
optimization is most effective when the step over each block is (ideally) exact. This is computation-
ally achievable for the label-step, which involves a linear system. However, training a tree optimally
even in the simplest case (axes-aligned with binary inputs and output) is NP-hard [22]. Therefore,
we need an approximate but good solution. Most traditional tree learning algorithms, based on
greedy recursive partitioning (such as CART), are highly suboptimal [21] and do not even consider
any specific loss function over trees. In contrast, the Tree Alternating Optimization (TAO) algorithm
[8, 7] fits decision trees by monotonically decreasing a well-defined and very general loss function
and regularization over a well-defined parametric space of trees, given an initial tree structure and
parameter values. This makes it also possible to use warm-start in the tree-step, i.e., to continue
improving the tree from the previous iteration—which greedy recursive partitioning cannot do, as it
constructs a new tree from scratch every time. Warm-start is essential to speed up the optimization
and to achieve stability in the results (CART-type algorithms are notoriously unstable in that small
changes in the training set can result in drastically different tree structures and parameters [21]). A
further, important advantage of TAO is that it can learn trees of quite general types, such as oblique
trees (see section 3.2), which are far more powerful that the traditional axes-aligned trees.

TAO has been shown to find much better trees under a variety of losses, regularization and types of
tree, as well as forests, and scales well to large datasets, see e.g. [40, 37, 41, 38, 18, 12]. Below we
provide a summary of TAO for completeness; more details can be found in [8, 7, 37]. TAO considers
a decision tree as a parametric model with a given structure and trainable parameters in each node
(Θ = {θi}nodes), and it optimizes an objective consisting of a loss and a regularization term, such as
that in eq. (7). TAO requires the loss to be a sum over individual points, so it cannot handle eq. (1),
which includes pairwise distances. However, our reformulation of the problem allows us to apply
TAO since the minimization in eq. (7) is now in the desirable form.

TAO takes as input an initial tree, for example a complete tree of depth ∆ with random weights at
each node, or a tree created by another algorithm. It uses a separability condition to decompose the
loss function (7) over subsets of non-descendant nodes. For instance, all nodes at the same depth are
non-descendant w.r.t. each other and can be trained independently (and in parallel). Then, TAO uses
an alternating optimization scheme such as the following: 1) pick all nodes at a certain depth and fix
all remaining nodes (i.e., we consider them as a function with constant parameters); 2) optimize each
node at that depth efficiently by solving a reduced problem (see below); 3) repeat this for all depths.
One pass through all nodes is a TAO iteration, and we keep iterating until convergence occurs or
until we reach a maximum number of iterations (pseudocode is given in Appendix A). Optimizing a
single node i (decision node or leaf) over its parameters can be shown to be equivalent to a simpler,
reduced problem operating only on those training points which currently reach i (denoted as reduced
set Ri). The solution of the reduced problem depends on the type of node:

• Decision node. With binary trees, this involves solving a certain binary classification problem.
Given the reduced set Ri, we pass each input {xn, yn} ∈ Ri to both children of i and calculate
the error (eleft

n , e
right
n ) induced by each child (note that all descendant nodes and their parameters

are fixed). Next, assign a pseudolabel ȳn ∈ {−1, 1} depending on which child brings the lower
error (either left or right). Each pseudolabel comes with the weight |eleft

n − e
right
n | since the error

made for each instance is different. Solve a weighted 0/1 loss binary classification on {xn, ȳn}.

• Leaf. The actual prediction of a tree occurs in its leaves; the decision nodes are just responsible
for routing a point to the corresponding leaf. Therefore, the optimization problem for a leaf is
equivalent to the original problem (7) but on its reduced set. Its solution depends on what type of
leaf model we use. With a constant label, it is the average of the response values (yn) in that leaf.
With linear leaves, the solution is to fit a linear regressor onRi (possibly with regularization).

3.2 Sparse oblique decision trees

The TAO algorithm is applicable to a large spectrum of decision tree types. Here we pick a sparse
oblique tree with constant leaves as our main model. Each decision node i makes a hyperplane-
based split: go to the left child if wT

i x < wi0, else go to the right one. Therefore, the decision node
reduced problem (which is NP-hard) is approximated by fitting a logistic regression. Additionally,
we apply an ℓ1 penalty as regularization term φ(·) to encourage sparsity. We use LIBLINEAR [16]
to fit this model. As for the leaves, we take the average of the response values (y) in that leaf.
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The motivation behind choosing sparse oblique trees is twofold. First, traditional axis-aligned trees
are very restrictive since each split uses a single feature, which neglects interactions or correlations
between features. Indeed, empirical results show oblique trees achieve far better performance [41].
Besides, thanks to the sparsity, only few features are active at each split, and nodes in the initial tree
can become redundant and be pruned if their weight wi becomes zero [8]. This, together with the
fact that oblique trees typically have small depth, makes the final model more interpretable.

3.3 Special case: exact solution when the tree structure is fixed

Problem (1) is hard to solve over the entire space of decision trees, but we can obtain an exact
solution if the structure and decision node parameters are fixed, since then the problem reduces to
solving a linear system. In this case, the only parameters to optimize are in the leaves. Assuming
each leaf outputs a constant value, we can reformulate the tree prediction as a sum of basis functions
T (x) =

∑m

i=1
ci bi(x), where m is the number of leaves, ci ∈ R is leaf i’s label and bi(·) ∈ {0, 1}

is 1 only if x ends up in leaf i. Now we can rewrite (1) as the following minimization problem over
the parameters of all the leaves c = (c1, . . . , cm)T :

E(c) =

l
∑

n=1

( m
∑

i=1

ci bi(xn)− yn

)2

+ γ

N
∑

n,m=1

wnm

( m
∑

i=1

ci (bi(xn)− bi(xm))

)2

(8)

= (Bc− y)T J (Bc− y) + γ cTBTLBc (9)

where B = (bi(xn)) ∈ RN×m can be precomputed since we fix the tree structure and parameters
in all decision nodes. Minimizing this over c yields the following linear system:

Ac = BTJy (10)

where A = BTJB + γ BTLB is a matrix of m×m. This is very fast to solve since oblique trees
are quite shallow, so the number of leaves m is not large (at most 1 000 in our experiments). Once
LapTAO is finished, we apply the above procedure as a post-processing to the final tree.

3.4 Computational complexity of LapTAO

At the top level, LapTAO runs a fixed number of iterations (depending on the µ schedule, typically
less than 20). Each iteration has to solve (approximately) two subproblems:

• Label-step: this is a large, sparse linear system of N ×N (where N is the sample size). We solve
it approximately with conjugate gradients (CG), initialized by the previous iterate (warm-start).
Each CG iteration is O(Nk) where k is the average number of neighbors in the graph, and we run
just a few CG iterations. The total runtime of the label step is less than 30 seconds in the largest
experiment we conducted (1M points). Convergence can be further improved via preconditioning
(e.g. Jacobi). We can also solve the linear system exactly in O(N2) by caching its SVD, as noted
in Appendix C, but this is only convenient if N is a few thousands at most.

• Tree-step: fitting an oblique tree with TAO to the N training points. Each iteration of TAO
updates each decision node and leaf node. For each leaf, we compute the average of the labels of
its reduced set (training points reaching it), so this is O(N) over all the leaves. For each decision
node, we train a logistic regression on its reduced set. Assuming logistic regression is linear on the
sample size and dimensionality, this is O(ND) total for all the decision nodes at the same depth,
although with a larger constant factor in the big-O notation than for the leaves. Hence, processing
all the decision nodes in the tree is O(∆ND), or equivalently, running ∆ logistic regressions on
the whole training set. See more details in [8, 7]. A critical computational advantage of TAO
is due to the fact that each node (decision or leaf node) only handles the points in its reduced
set. Therefore, TAO itself can be parallelized depthwise (see pseudocode in Appendix A). In
summary, the overall runtime of TAO is O(∆ND) per TAO iteration. We run 10 TAO iterations
in our experiments.

Since the tree-step dominates the label-step, in terms of runtime our algorithm is almost like se-
quentially training decision trees (as in boosting). Additionally, each tree-step can be parallelized.
Further acceleration can be done using GPUs. This is possible with GPU-friendly implementations
of logistic regression, and also because oblique trees involve scalar products (unlike axis-aligned
trees).
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Finally, this computational cost should also include computing the nearest-neighbor graph and its
affinity matrix W. This is indeed a large cost, and it affects all semi-supervised learning methods
based on the graph Laplacian. A naive implementation requires O(DN2) to calculate the distance
vector for each point and determine the nearest neighbors. For large datasets, one usually uses
approximate nearest neighbors (e.g. via Locality Sensitive Hashing or other techniques [2]).

4 Experiments

This section shows our experimental findings. We demonstrate that the proposed method domi-
nates over other semi-supervised learning frameworks in accuracy and approaches fully supervised
baseline with far less amount of labeled data. This is true with practically no exceptions against
baseline tree-based models where accuracy margin is often quite large. As for the other methods
(non tree-based), we either outperform them or achieve similar error, which makes LapTAO a strong
competitor. To show that, we consider several regression and classification benchmarks of varying
sizes and across different domains. We were able to run our algorithm on a dataset with up to 1
million instances on a regular PC, which shows its scalability. Moreover, using fashion-mnist as an
example, we demonstrate that the final model, a shallow oblique tree with sparse parameter vector
in each node, provides insights into how it achieves a prediction allowing model interpretability.

4.1 Experimental setup

We compare our proposed approach (LapTAO) with the following baselines: 1) oblique–all fits an
oblique tree with full supervision, this shows the theoretical maximum performance we can achieve;
2) oblique–lbl is the oblique trees trained on labeled portion of data Dl (this completely discards
large portion of unlabeled data); 3) Self-training (axis–self, oblique–self ) is an iterative procedure
that uses the model predictions to enlarge the portion of labeled data (see section 2 for details and
references), we closely follow the implementation by Yarowsky [36]; here, “axis” means traditional
axis-aligned trees; 4) Laplacian SVM is a seminal work by Belkin et al. [3] which has similar
problem formulation as in eq. (1) but for SVM. Additionally, Appendices E.1–E.2 include the com-
parison with semi-supervised classification trees by Levatić et al. [26] and EBBS by Chen et al. [14].
Regarding hyperparameters, given the fixed cross-validation set (1% of train data), we explored as
best as we could all important hyperparameters for all methods (see details in Appendix D). These
include: controlling a tree depth (∆), confidence threshold for self-training, σ and C values for
LapSVM, etc. It worth to mention that the hyperparameter settings suggested by authors or their
default values work best in most cases.

We use TAO to train oblique trees and CART [6] to train axis-aligned trees. For all methods that
use TAO, we set the total number of TAO iterations to 15. The depth ∆ as well as the regularization
parameter α are tuned via cross-validation. As for the settings that are specific to LapTAO, we
proceed as follows. To construct the graph Laplacian, we use the Gaussian affinities with k-nearest
neighbors and perplexity parameter K tuned for each dataset. The linear system in the label-step
is solved either using direct methods (less than 20k dimensions) or Conjugate Gradient method for
large scale problems. We use γ = 0.1 in all experiments. As for the main loop of the augmented
Lagrangian, we iterate 20 times starting from small value for µ0 = 0.001 multiplied by 1.5 after
each iteration. The remaining details as well as dataset descriptions can be found in Appendix D.

4.2 Main results

Fig. 2 summarizes the main results which are the trade-off plots of test error versus the percentage
of labeled data on two regression and classification tasks. Intuitively, the error should go down
monotonically as we increase the amount of supervision which is clearly the case in all figures.
According to our findings, KNN and “axis–self” show the worst results in almost all benchmarks.
The only case when KNN performed reasonably good was on MNIST, which is known to work well
with “template classifiers” (e.g. RBF network, kernel SVM, KNN, etc.). Even in that case it has a
large error gap with respect to LapTAO. The poor performance of the “axis–self” can be explained
by suboptimality of greedily grown trees [21] and suboptimality of the self-training approach, which
is mostly based on heuristics. Next, oblique trees trained on supervised data only (“oblique–lbl”)
leads to the significant drop in accuracy (magenta vs black lines). This shows that relying only on
labeled data is not enough to achieve a decent performance. Incorporating an oblique tree into self-
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Figure 2: Results on regression (year_pred, cpu_act) and classification(mnist, susy) tasks. Numbers
in brackets report the training size, number of features and output dimension (or number of classes).
x–axis shows the percentage of labeled data provided to the algorithm and y–axis shows the test error.
Baselines: oblique–all fully supervised baseline (i.e., trains an oblique tree on 100% of labeled data);
*–lbl usesDl only to train the corresponding model; *–self is an iterative self-training approach (see
section 2 and 4.1).

training framework brings certain benefits (“oblique–self”), notably for classification tasks (green
dashed vs solid lines). Finally, LapTAO consistently improves over all other SSL methods, often by a
considerable margin. For instance, in case of 3% in cpu_act and 1% in MNIST, the difference in the
error with the second best SSL approach is several orders of magnitude. It shows acceptable results
even in extreme label scarcity scenarios, e.g. when we provide < 0.5% of labeled data on year_pred
and susy. Moreover, LapTAO approaches the fully supervised baseline more quickly: for MNIST,
we can achieve the same ∼ 5% test error as “oblique–all” using only 20% of labeled training points.
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Figure 3: Comparison against LapSVM
on Fashion-MNIST (3 classes: “shirt”,
“bag” and “ankle boot”).

Comparison with Laplacian SVM LapSVM is a natu-
ral baseline to compare with since it uses the same prob-
lem formulation as in eq. (1) but for the support vector
machines. However, we were not able to include it to the
previous comparison (in fig. 2) due to implementation is-
sues: 1) it is impractical to apply it for problems beyond
30k instances as it requires computing the inverse of the
modified dense Gram matrix on the entire dataset;1 2) it
can handle a classification task only. Therefore, we pick
the subset of Fashion-MNIST (3 classes: “shirt”, “bag”
and “ankle boot”) resulting in 18k training points. To
make the comparison as fair as possible, both of the al-
gorithms use the same graph Laplacian matrix and we en-
force the same penalty on it (γ = 0.1). For LapSVM, we
use the rbf kernel with σ = 5 and the hyperparameter for
LIBSVM [13] is set to C = 100.

The results are illustrated in fig. 3. It is worth to mention
that similar to the original MNIST, “template classifiers”,
such as kernel SVM, show quite good performance on
this task which makes LapSVM a strong baseline [35].

On top of that, the problem formulation in eq. (1) is still convex for SVM and can be efficiently
solved, whereas we are dealing with much harder problem for oblique trees. Therefore, it is nice to
see that LapTAO performs similarly (but slightly worse) up to some point. However, it is surprising
to see that the error gap between our approach and LapSVM narrows as we introduce more label
scarcity and eventually we start to outperform when % of labeled data = 3%. From that point on, the
table turns to the side of LapTAO and the difference becomes more and more noticeable (especially
for 0.6%). One possible explanation for this behavior is the overfitting issue on small datasets, which
is a known problem for kernel SVM, whereas sparse oblique trees are shown to be relatively robust
to that [41].

1One could approximate the inverse by Nyström (or other) method but this is beyond the scope of this paper.
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Table 1: Training runtime for different semi-supervised learning algorithms (in seconds).

Dataset \ Method LapTAO oblique–self axis–self SSCT

cput_act 1072s 934s 23s 936s
mnist 11027s 9572s 514s 15932s
susy 24578s 17873s 816s >1d

Training time Table 1 reports the training time for different baseline methods. Overall, LapTAO
algorithm for the largest experiment we performed (on susy) took less than 7 hours and around 3
hours for the moderate dataset size (mnist). This is comparable to the self-training baseline (i.e.,
oblique–self) but LapTAO produces far better trees in terms of accuracy. Please note that we ran
our code on a regular PC (Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz, 32GB RAM), with little
parallel processing and using unoptimized Python implementation. Therefore, the training runtime
for LapTAO can be significantly improved. We did not use any GPUs.

4.3 Model interpretability

Model explainability and interpretability is a topic of renewed interest due to the widespread usage
of machine learning and the risks associated with privacy, algorithmic bias, etc. In order to trust and
rely on such automated systems, it is crucial to understand how they achieve a certain prediction. In
contrast to “black box” models, decision trees are long considered as interpretable models due to
the hierarchical structure. This allows to transform the model prediction as “if-then” rules extracted
from root-to-leaf path. Specifically for oblique trees, each logical clause takes the following form:
go to left child if wTx < w0, else go to right. This makes the interpretation a little harder since we
need to look at linear combination of features at each split. However, in our case, we add ℓ1 penalty
which encourages parameter vector at each node to be sparse, i.e., only few features participate in
decision making.

In this section, we argue that the oblique trees trained using LapTAO strike a good trade-off between
accuracy and interpretability which is controlled via hyperparameter α. To illustrate this, we use
the same subset of Fashion-MNIST as in section 4.2 and train a sparse oblique tree using LapTAO
(10% of training data are labeled). By decreasing the value of α we enforce more sparsity resulting
into shallower and more interpretable trees (since complexity decreases). However, we sacrifice the
performance since the error goes up.

Fig. 4 shows the results for α = 1 and α = 10, more results can be found in Appendix E.4. For
simplicity, let us focus on the bottom tree (α = 10). Clearly, each leaf contains instances of nearly
the same class since the average image looks like a representative “template” from the corresponding
class. As for the decision node, consider the root (node #1). All “Boot” images are sent to the right
child of the root. Also, it is easy to notice that such images do not contain any pixels in the top-left
quadrant of the image. Therefore, the weight vector at the root has negative (blue) values in the
corresponding elements and we know that negative values are responsible for sending an instance to
the left. In other words, all images that have something in the top-left quadrant are sent to the left.
Therefore, boots will end up in the right child. Similarly, node #2 sends most of the images that have
M-shaped stroke in the top-center part (e.g. large bags, shirts with collar) to the left child. Following
the same logic, we can obtain meaningful insights for each decision node. Also note that all nodes
have majority of values equal to zero (thanks to the sparsity) which makes the interpretation easier.

5 Conclusion

Semi-supervised learning is most commonly formulated with a graph-based regularization term,
which encourages the labels of nearby (similar) points to be similar. This has been very successful
with models such as neural nets and kernel machines, but until now it remained an open problem with
decision trees, which define a nondifferentiable function. We have shown how to reformulate the
problem in a way that is amenable to iterative optimization. By introducing auxiliary variables, we
isolate the difficult part (the tree optimization), and all the algorithm needs to do is to fit a regression
tree in alternation with solving a sparse linear system that smoothes the predicted labels. The tree
fitting can be done reliably and efficiently using the Tree Alternating Optimizing (TAO) algorithm,
which also allows us to use more powerful trees, such as sparse oblique trees. Our experimental
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Figure 4: Some of the oblique trees obtained from LapTAO on Fashion-MNIST. Both figures use
10% of labeled data, but they differ in regularization penalty (α) on the tree: (top) α = 1 with
Etest = 2.1% and (bottom) α = 10 with Etest = 3.9%. At each decision node, we illustrate the
weight vector of dimension 784 reshaped into 28× 28 square where each value is colored according
to their sign and magnitude (positive, negative and zero values are blue, red, and white, respectively).
At each leaf, we show the class label, the total number of training points in that leaf (in brackets),
and the average of input images in that leaf (as a greyscale image).

results demonstrate that the algorithm can train accurate and interpretable decision trees even in
extreme label scarcity situations. Our framework can be generalized to other machine learning
models, such as ensembles of trees, which will be the future direction of our work.
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A Pseudocodes

input labeled set Dl = {xn, yn}ln=1 and unlabeled set Du = {xn}Nn=l+1;
penalty parameters: α, γ; µ schedule: µ0, . . . , µmax;
graph Laplacian L = D−W;

λ← 0 (initialize Lagrange multipliers);
z0 ← solve the linear system in eq. (6) with µ = 0;
t(·;Θ)← fit a tree to ({xn}Nn=1, z0) (algorithm 6);
for µ = µ0 < µ1 < µ2 < · · · < µmax;

repeat
label-step: z← solve the linear system in eq. (6) given fixed t(·;Θ);
tree-step: t(·;Θ)← fit a tree to ({xn}Nn=1, z−

1

2µ
λ) given fixed z

using algorithm 6 (see eq. (7));
Lagrange multipliers step: λ← λ− µ(z− t(·;Θ));

until stop
end for
Post-processing (see section 3.3)
return t(·;Θ)

Figure 5: Pseudocode for LapTAO. “Stop” for inner loop occurs when (z,t(·;Θ) ) converge (ideally).
However, in practice, we use a fixed number of iterations (e.g. 1 in most experiments).

input training set {(xn,yn)}
N
n=1; penalty α;

initial tree t(·;Θ) of depth ∆ with parameters Θ = {θi}nodes;
N0, . . . ,N∆ ← nodes of a tree t(·;Θ) at depth 0, . . . ,∆, respectively;

generate a reduced set for each node i: Ri (points that reach node i);
repeat

for d = ∆ down to 0
for i ∈ Nd (parallelize, optionally)

if i is a leaf then
θi ← take the mean of {yn}n∈Ri

else
generate a pseudolabel yn and weight wn = |eleft

n − e
right
n | for each instance xn ∈ Ri

θi ← fit ℓ1 regularized weighted binary classifier on {(xn, yn)} ∈ Ri with penalty α
end for

end for
updateRi for each node

until max number of iterations
return t(·;Θ)

Figure 6: Tree Alternating Optimization (TAO) algorithm. Here, we limit this pseudocode for deci-
sion trees with constant leaves, but it can be trivially extended to any other type. Note: Algorithm 5
for LapTAO uses z as a ground truth vector (instead of y).

B Derivation of the solution for the label-step

Recall that the augmented Lagrangian [29] formulation in eq. (5) defines a new, unconstrained
optimization problem:

min
z
L(z) = (z− y)T J(z− y) + γ zTLz− λ

T (z− t(X;Θ)) + µ‖z− t(X;Θ)‖2. (11)

Here, we optimize the problem over z only and omit the term involving α since we fix the tree
t(X;Θ) during the label-step. One can see that this is a quadratic function. Next, taking the first
and second order derivative w.r.t. z and multiplying all terms by 0.5 yields:

∂L

∂z
= J(z− y) + γLz−

1

2
λ+ µ(z − t(X;Θ)) and

∂2L

∂z∂zT
= A = J+ µI+ γL. (12)
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It is easy to see that the matrix A (Hessian) is positive definite, because: µ, γ > 0, L is positive
semidefinite [3], I is identity and J is the diagonal matrix with first l entries equal 1 and the rest
are 0. Therefore, xTAx = xTJx + µxT I x + γxTLx > 0 for all x ∈ R

N . This means that our
problem is strictly convex with a unique solution given by the linear system below:

Az = Jy + µt(X;Θ) +
1

2
λ. (13)

Moreover, it is easy to see that A will be a sparse matrix if graph Laplacian L is sparse. And this is
the case since in practice we construct W by using the nearest neighbors graph. This allows us to
solve the large scale linear system in an efficient way (e.g. via Conjugate Gradient method).

C Accelerating the label-step in LapTAO

Although Conjugate Gradients (CG) method is a reasonable choice to solve the linear system for
large scale problems, there is a way to accelerate the label-step for small-medium sized problems.
The crucial observation is that the coefficient matrix A ∈ R

N×N is changed by adding µI at each
iteration of the Algorithm 5 and the remaining part is static (J + γL). This naturally leads to
a question: can we improve the computation of A−1 from O(N3) to O(N2) to solve the linear
system (13)? Denote the static part of the matrix as B = J + γL. Moreover, B is a symmetric
matrix since L is symmetric and J is diagonal. Therefore, we can calculate its eigendecomposition
B = QΛQT , where Q is an orthogonal matrix. One can derive the inverse via Sherman-Morrison-
Woodbury formula. However, a more direct and easier derivation is:

A−1 = (µI+B)−1 = (µI+QΛQT )−1 = (Q(µI+Λ)QT )−1 = Q(µI+Λ)−1QT (14)

where µI+QΛQT = Q(µI+Λ)QT comes from the orthogonality of Q: QQT = I. Notice that
µI +Λ is a diagonal matrix and computing its inverse takes O(N). Therefore, calculating eq. (14)
costs O(N2). The only costly part is computing the eigendecomposition (for B) which still requires
O(N3) time (and destroys the sparsity) but we do it only once before starting our algorithm. In
practice, we found this method to be useful only when N is a few thousands at most.

D Experimental setup

D.1 Datasets

For all datasets described below, we scale features to have values between 0 and 1, and shift them
to be centered around 0. Moreover, we select 1% of training data as cross validation to set the
hyperparameters for each method: a tree depth (∆), confidence threshold for self-training, σ and C
values for LapSVM, etc. All reported errors are in test sets.

• mnist Handwritten digits recognition task [25]. The features are pixel grayscale values in
[0,1] of each 28 × 28 digit image which belong to one of ten classes. We use the same
training/test partition as in [25].

• susy Detection of particle collision events (binary classification), available in the UCI Ma-
chine Learning Repository [27]. The dataset contains 4.5M points with 18 attributes. We
use the first 1M instances and randomly select 90% out of it for training and the rest for
test.

• cpuact Predict the portion of time that CPUs run in user mode given different system
measures. We obtained it from the DELVE data collection2. It contains 8192 instances
with 21 features. We select 60% of data as training. Since this is a regression task, we
provide the output range: [−0.5, 99.47].

• year_pred A subset of the Million Song Dataset [4]. The task is to predict the age of
a song from several song statistics given as metadata (timbre average, timbre covariance,
etc.). The dataset is obtained from the UCI Machine Learning Repository [27]. It has 464k
training and 52k test points. The total number of features are 90. Since this is a regression
task, we provide the output range: [1922, 2011].

2
http://www.
s.toronto.edu/~delve/data/
omp-a
tiv/des
.html
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• fashion_mnist [35] is another benchmark dataset used for object recognition. It has similar
characteristics as mnist (70k grayscale images of 28 × 28, 10 classes of different clothing
items). We use this dataset primarily to compare LapTAO with LapSVM and to visualize
the trained trees. Since the LapSVM has scalability issues for large number of points, we
pick the subset of fashion_mnist (3 classes: “shirt”, “bag” and “ankle boot”) resulting in
18k training points.

D.2 Methods

We use TAO to train oblique trees and CART [6] (scikit-learn implementation) to train axis-aligned
trees. For all methods that use TAO, we set the total number of TAO iterations to 15. For oblique
trees, we tune the following hyperparameters: penalty α and a tree depth ∆. All oblique trees are
initialized from a complete tree of depth ∆ with random parameters at each node. As for the axis-
aligned trees, these are the hyperparameters to tune: max_depth, min samples at each leaf and min
samples to split.

• LapTAO we implement our algorithm in Python 3.7.6 and do not use any parallel process-
ing. We tune the following hyperparameters: penalty α, tree depth ∆, k-nearest neighbors
and perplexity parameterK for the Gaussian affinities. We set the γ = 0.1 and fix the num-
ber of iterations (in Algorithm 5) to 20 starting from small value for µ0 = 0.001 multiplied
by 1.5 after each iteration. The linear system in the label-step is solved either using direct
methods (less than 20k dimensions) or Conjugate Gradient method for large scale problems.
All trees are initialized from a complete tree of depth ∆ with random parameters at each
node.

• Oblique–all fits an oblique tree with full supervision (i.e., using all available labeled data),
this shows the theoretical maximum performance we can achieve.

• Oblique–lbl is the oblique trees trained on labeled portion of data Dl (this completely
discards large portion of unlabeled data).

• Self-training (axis–self, oblique–self) is an iterative procedure that uses the model pre-
dictions to enlarge the portion of labeled data. We closely follow the implementation by
Yarowsky [36]. Here, “axis” means traditional axis-aligned trees (trained by CART [6]).
We tune the confidence score for classification problems and use all predicted points for
regression problems. We set the maximum number of self-training iterations to 10.

• LapSVM (Laplacian SVM) is a seminal work by Belkin et al. [3] which has similar prob-
lem formulation as LapTAO (eq. (1)) but for SVM. We tune σ and SVM parameter C. We
use their MATLAB implementation.

• SSCT semi-supervised classification trees by Levatić et al. [26]. This method incorporates
unlabeled data into greedy tree growing procedure by modifying a splitting criterion to
take into account unlabeled data. That is, a splitting score for each [feature, threshold] pair
consists of two parts: traditional impurity score (e.g. gini index) for labeled data and a
“clustering” score for all available data which pushes each child to have instances of the
same cluster. For this method, apart from CART related settings (e.g. max_depth), we tune
the weight parameter w. We use the R implementation provided in Alabarce et al. [1].

E Additional experimental results

E.1 Comparison with SSCT

Fig. 7 reports the results of SSCT on the same benchmarks that we used in the main paper. Here,
we limit the comparison for cpu_act (regression) and mnist (classification) since other benchmarks
took extremely long time (> 7 days) and still failed to complete. Although the original paper [26]
considers only classification task, implementation by Alabarce et al. [1] extend it to regression. We
did not include this baseline in the main paper to simply avoid cluttering. On top of that, overall
results are similar to the “axis–self” and therefore, it does not change our conclusions. Nevertheless,
in the left plot (mnist), one can see that SSCT consistently improves over “axis–self” and indeed
beneficially leverages information from unlabeled data. However, the performance w.r.t. LapTAO is
still noticeably worse. Moreover, “axis–self” shows better error in the regression task (cpu_act).
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Figure 7: Similar to fig. 2 but with SSCT [26] results added (cyan lines). Numbers in brackets report
the training size, number of features and output dimension (or number of classes). x–axis shows the
percentage of labeled data provided to the algorithm and y–axis shows the test error.

Table 2: Comparing the performance of LapTAO vs EBBS (single tree) on cpu_act (top) and mnist
(bottom).

Method \ % of lbl data 1% 3% 5% 8% 10% 20%

cpu_act

LapTAO 255.13 65.75 12.03 10.36 9.19 8.32
EBBS (1 tree) 261.05 92.76 16.52 12.78 12.41 9.87

mnist

LapTAO 9.61 6.93 6.27 6.12 5.97 5.45
EBBS (1 tree) 10.57 7.49 7.05 6.39 6.15 5.91

E.2 Comparison with EBBS

We also compare with EBBS (see Table 2), the method which comes from Graph Neural Network
(GNN) literature. EBBS is specifically designed for gradient boosted decision trees (GBDT). But by
carefully inspecting the work, we do realize that if we limit EBBS to a single tree, then their problem
reduces to fitting a tree to the smoothed labels. This is similar to the beginning of the penalty path
in LapTAO (initialization step), where we do fit an oblique tree to smoothed labels. However, we
would like to point out that the idea of first smoothing the labels throughout the unlabeled points
(“label propagation”) and then fitting a model (“induction”) is well known since the seminal graph-
Laplacian SSL approaches, such as references [42, 44, 45]. Results in the table above are for cpu_act
and mnist, which are clearly better for LapTAO.

Table 3: Experimenting with different tree learning algorithms in tree-step of our algorithm: CART
vs TAO. For reference, we also report the performances of CART_SELF (CART+self-training) base-
line. The results are for cpu_act and the metric used is MSE.

Method \ % of lbl data 1% 3% 5% 8% 10% 20%

LapTAO 255.13 65.75 12.03 10.36 9.19 8.32
LapCART 263.50 83.79 18.14 13.93 13.04 11.69
CART_SELF 293.45 228.63 21.89 21.04 20.45 14.92
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E.3 Replacing TAO with CART in the tree-step

Table 3 reports the results of using alternative tree fitting algorithms within our framework. Here,
LapCART indicates our proposed algorithm but the tree-step was replaced by CART. For reference,
we also report the performances of our originally proposed LapTAO and CART_SELF (CART+self-
training) baselines. Results clearly indicate superiority of LapTAO over other baselines. They also
show that, if we do insist in using CART, our algorithm improves over the CART self-training
baseline (CART_SELF). So, it is still beneficial to apply our algorithm with CART.

We would like to emphasize that CART does not support warm-start since it grows a tree from
scratch rather than updating the current parameters. This is problematic because CART (and related
greedy recursive partitioning algorithms such as C4.5) are known to be very sensitive to the training
set: a little change in the data typically leads to completely different tree structures and parameters.
Indeed, we observed a significant instability and noisy behavior across iterations with CART. This
does not happen with TAO because it takes the tree from the previous iteration as initialization.

E.4 Decision tree visualizations

Fig. 8-9 illustrate decision trees obtained from various settings of α. The results clearly indicate that
this hyperparameter has a direct effect on tree sizes and helps to trade-off between interpretability
and model performance. Smaller values for α typically lead to a small error but generates larger
trees which may be hard to interpret.
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Figure 8: Some of the oblique trees obtained from LapTAO on fashion_mnist. Both figures use 10%
of labeled data and the same graph Laplacian obtained in section 4.3, but they differ in regularization
penalty (α) on the tree parameters: (top) α = 2 with Etest = 2.9% and (bottom) α = 10 with
Etest = 3.9%. At each decision node, we illustrate the weight vector of dimension 784 reshaped into
28×28 square where each value is colored according to their sign and magnitude (positive, negative
and zero values are blue, red, and white, respectively). This can be interpreted as: which features
are responsible for sending an instance to the left (blue) or right (red) child? At each leaf, we show
the class label, the total number of training points in that leaf (in brackets), and the average of input
images in that leaf (as a greyscale image).
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Figure 9: Same as in fig. 8 but of α = 0.2 with Etest = 2.0% (top) and α = 1 with Etest = 2.1%
(bottom). Reducing the value for α enforces less sparsity and the final tree has more nodes which
might be harder to interpret. However, it has a positive effect on accuracy.
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