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Abstract—Regression forests (ensembles of trees) are consid-
ered as the leading off-the-shelf method for regression. One of
the main approaches of constructing such forests is based on
boosting. However, majority of the current boosting implemen-
tations employ an axis-aligned tree as a base learner, where
each decision node tests for a single feature. Moreover, such
trees are usually trained by greedy top-down algorithms such as
CART which is shown to be suboptimal. We instead use oblique
trees, where each decision node tests for a linear combination of
features and train them with the recently proposed non-greedy
tree learning method–Tree Alternating Optimization (TAO). We
embed the TAO algorithm into the boosting framework and show
its effectiveness in the regression setting. We show that it produces
much better forests than other types of tree ensembling methods
in terms of error, model size and inference time. The result has
an immense practical impact on various applications such as in
signal processing, data mining, computer vision, etc.

I. INTRODUCTION

Regression analysis is an important problem studied in

statistical modeling and machine learning that has been widely

used in many signal processing, data mining [1] and computer

vision [2] applications. A typical task in regression is to predict

a continuous scalar or vector output from an input data. One

of the most successful methods in solving such problems

attributes to ensembles of decision trees. Their success is

due to their ability to achieve low variance and low bias

by combining weakly correlated trees. The main approaches

are based on bagging, where individual trees are trained

independently on bootstrap samples of the data and on a subset

of features [3]; or on boosting [4], where individual trees are

trained sequentially on the whole data but with adaptively

weighted instances.

Here, we focus on boosting algorithms which are well-

studied in machine learning and statistical literature. A back-

bone of all boosting algorithms is building a prediction model

by sequentially combining a collection of weak learners which

are sometimes referred as base learners. According to the

literature [5]–[7], a decision tree based model is a common

choice for a base learner due to its fast training time and ability

to achieve a low bias. Despite the fact that such models are

sensitive to the input (i.e. have high variance), the variance

can be sufficiently reduced by leveraging boosting idea which

produces a powerful model by ensembling weak learners.

However, conventional trees that are employed by boosting

algorithms have two major drawbacks. First, they are trained

using greedy tree induction algorithms (in top-down fashion)

such as CART [8], C4.5 [9] and variations thereof. Such algo-

rithms are known to be suboptimal [7] since splitting a node at

each recursive step is achieved by approximately optimizing

a purity (or other variance-based) criterion that is indirectly

related to the desired objective function. Second, such trees

make axis-aligned split, i.e. each internal (or decision) node

tests for a single feature which limits input feature utilization

(e.g. correlation between features is ignored).

We address both of these issues by: using trees with more

complex nodes (oblique, i.e., having hyperplane split) and

using a better optimization algorithm to learn an individual

tree. For this matter, we build on top of a recently proposed

algorithm for learning decision trees, Tree Alternating Op-

timization (TAO) [10], [11]. TAO, in general, finds a good

approximate optima of an objective function over a tree with

the given structure and it applies to trees beyond axis-aligned

splits. We propose a novel boosting framework for regression

which utilizes an oblique TAO tree as a base learner. To the

best of our knowledge, this is the first work to show the

successful merge of boosting and oblique decision trees for

regression problems. Obviously, oblique (or linear multivari-

ate) splits are more powerful models compared to axis-aligned

(or univariate) since it brings more flexibility and better feature

utilization. We additionally apply sparsity penalty to make

TAO trees more efficient. We perform extensive evaluations

of our proposed method where we demonstrate that boosted

TAO trees significantly improve over SoA boosting methods in

terms of accuracy, model size and inference time. Additionally,

we analyze different features of our algorithm that are unique

to the boosted TAO trees (e.g. hyperparameters choice).

In the rest of the paper, we review related work (section II)

and describe a boosting framework we use including our

modifications (section III). We then evaluate our approach

experimentally and analyze it from different perspectives (sec-

tion IV).

II. RELATED WORK

A. Boosting algorithms for regression

The first practical boosting implementation attributes to Ad-

aBoost by [4]. Since then a large number of boosting methods

has been developed such as the gradient boosting machine

[12] and a variaty of literature is written which provides

extensive reviews on them [5]–[7]. Initially designed for binary

classification, AdaBoost has many multiclass extensions and

adaptations for regression problems.



Boosting for regression has not been studied as extensively

as it is for classification, nevertheless quite a few boosting

algorithms have been developed for regression. The original

AdaBoost paper [4] presents an adaptation of boosting for

regression by reducing the problem into binary classification.

It does so by partitioning the target value into equal sized

intervals, and so performing binary classification on each

interval renders the problem similar to AdaBoost for multi-

class classification. This algorithm, AdaBoost.R, has several

problems [13], and has hardly ever been used in practice.

By performing some ad-hoc modification to it, Drucker [14]

presents AdaBoost.R2, which is considered as the first prac-

tical boosting algorithm for regression. We focus on it in this

paper, and present it in detail in section III-A. Avnimelech and

Intrator [15] introduce a threshold based boosting for regres-

sion and analyzes it from a PAC perspective. Another threshold

based algorithm is AdaBoost.RT [16], which is designed to

improve upon [15]. However, these threshold based algorithms

introduce an additional hyperparameter for the threshold, and

they may have numerical problems when the target values

are zero or close to it. Finally, gradient boosting framework

[12] fits base learners in a greedy stagewise additive manner

to perform approximate functional gradient descent, and it

is applicable to both classification and regression problems.

Recent highly optimized gradient boosting implementations

[17]–[19] support regression tasks.

B. Decision trees as base learners

A cornerstone of any boosting algorithm is to sequentially

train a collection of base learners and then combine them to

build a prediction model. Many machine learning models have

been used as base learners for boosting. These include decision

trees, support vector machines (SVMs) [20], multilayer per-

ceptrons (MLPs) [21], [22], and many others. According to the

literature in ensemble learning [5], models with high variance

(e.g. decision trees) and with sensitivity to initialization and

training run (e.g. neural networks) are more preferable than

others in ensemble learning. Due to its high variance and

fast training time, decision trees are the most widely used

choice for boosting. For instance, the most successful and

commonly used boosting frameworks [17]–[19] are based on

decision trees. However, all these trees are induced greedily

using top-down recursive partition algorithms such as CART

[8] or C4.5 [9], which are suboptimal and they usually apply a

thresholding function based on only one feature at a time (i.e.

axis-aligned or univariate split). The latter one clearly leads to

the underutilization of the features and correlations between

them. Decision trees having linear splits (i.e. oblique) address

this issue and we employ them in our modified boosting

framework. It is worth mentioning that there were previous

attempts to train boosted oblique trees [23], [24], however,

they mostly focus on classification rather than regression and

their performance has been found similar or marginally better

to that of axis-aligned trees. Whereas, we demonstrate that

our boosting framework with oblique trees can significantly

outperform traditional tree ensembles in number of regression

benchmarks. Moreover, as will be discussed in a later section,

oblique TAO trees possess the property of random parameter

initialization, which is considered to be beneficial in ensemble

learning.

III. BOOSTED TAO TREES FOR REGRESSION PROBLEMS

A. Boosting framework

Out of many boosting algorithms which exist today, we

choose a simple one: AdaBoost [4]. Initially developed for

the classification task, this meta-algorithm is considered as

one of the first boosting implementations. We use a direct

extension of this algorithm for the regression setting known

as AdaBoost.R2 [14] which is considered as the first practical

boosting algorithm for regression. The reason of such a choice

is that we really wanted to make our algorithm as simple as

possible so that it can be directly used in practical applications.

Moreover, the main goal of this paper is to verify the concept

and one can straightforwardly use more recent and efficient

boosting framework if so desired (e.g. XGBoost [17]). That

said, we demonstrate that our approach works extremely well

even with such relatively simple boosting technique.

Algorithm 1 shows the pseudocode of our boosting frame-

work. We directly extend AdaBoost.R2 and employ TAO

regression tree as a base learner. Denote a tree output as Tt(·)
parametrized by Θ, then each boosting step involves training

a base learner (TAO tree) to minimize the following weighted

regression loss:

E =

N∑

n=1

wnL(yn,Tt(xn;Θ)) (1)

where L can be any regression loss such as squared error

(used throughout this paper), absolute error, robust losses, etc.

Additionally, one can use various regularizations added to the

loss (e.g. ℓ2 penalty) to obtain more compact models and to

avoid overfitting. Here, wn is the weight per training instance.

We emphasize that we directly handle these weights in the base

learner training phase whereas most of the practical boosting

implementations (including the original AdaBoost.R2) apply

resampling techniques (with probabilities proportional to the

weights). Once the base learner is trained, the algorithm

updates its weights according to the formula shown in the

algorithm and these weights are used for the next base learner.

The algorithm increases the weights of the instances which

have greater error and decreases the weights of the instances

with small error. The final prediction of the model is given as

a weighted median of all base learners’ outputs.

B. Learning a single tree

Consider the optimization problem at each boosting step

shown in eq. (1) which involves training a single tree with the

weighted regression objective function. We consider a binary

oblique tree where the decision function at each node has

a linear form: fi(x; θi) = θ
T
i x+ θi0 and it sends x to the

right child if fi(x; θi) ≥ 0 and to the left, otherwise. Leaves

(terminal nodes) are either constant (denoted by TAO-c) or



Algorithm 1: AdaBoost.R2 with TAO modification

Result: Forest of boosted TAO trees F

input training set {(xn, yn)}Nn=1;

number of trees T ;

learning rate η;

initial weights {wn = 1/N}Nn=1;

for t = 1 to T do
T← fit TAO using Algorithm 2 with the current

weights per instance {wn}Nn=1;

obtain predictions {ŷn}Nn=1 ← T({xn}Nn=1);

calculate a loss per instance ln ← |ŷn−yn|
D

;

where D = maxn|ŷn − yn|;
calculate an average loss L̄ = ΣN

n=1wnln
if L̄ > 0.5 then

set T = t− 1;

exit the loop;

end

form βt =
L̄

1−L̄
;

weight of the current tree αt = log(1/βt);

update the instance weights wn ← wnβ
1−ln
t

end

F (x) = weighted median of {T(x)}Tt=1 ;

linear predictors (denoted by TAO-l). We noticed that the

performance improvement is drastic with TAO-l and this is

the motivation of having trees with linear leaves. We use TAO

algorithm to train such tree and modify the algorithm to handle

the weighted loss.

The Tree Alternating Optimization (TAO) proposed in [10],

[11] is an iterative algorithm which non-greedily optimizes

a desired objective function over a tree and each iteration is

guaranteed to decrease that objective. It has been successfully

applied to train a single tree [25], [26] and ensemble of bagged

trees [27], [28]. Furthermore, decision trees trained via TAO

algorithm have nodes with hard splits (input follows exactly

one child of a node) rather than a soft split [29] where an

input instance is routed to each leaf with a certain probability.

Although such trees still have hierarchical structure, it is gen-

erally accepted to consider them as separate models since they

sufficiently differ from conventional trees (lack of conditional

computation, interpretability, etc.).

The basis of TAO is given by the following two theorems:

a separability condition and a reduced problem formulation.

We refer a reader to [11] for in-depth analysis of the method

and all the proofs which carry over with little modification.

Separability condition states that by picking any set of nodes

that are non-descendants and fixing the remaining nodes (i.e.

parameters) of a tree, the loss function in eq. (1) separates over

the parameters of the nodes in that set. This leads to the second

theorem (reduced problem) which states that we can train them

(i.e. non-descendant set of nodes) independently. Algorithm 2

shows how to train each node of a tree depending on its type.

If node is a leaf then the solution is given either by taking

an average response (if leaves are constant) or fitting a linear

Algorithm 2: Learning a single TAO tree with boosting

weights

Result: trained tree T

input training set {(xn, yn)}Nn=1;

initial random tree T(·;Θ) of depth ∆;

AdaBoost weights {wn}Nn=1;

repeat

for depth d = 0 to ∆ do

for i ∈ nodes at depth d do

if i is a leaf then
yi ← fit a weighted regressor (constant

or linear) on a reduced set Ri with the

current weights {wn};
else

θi ← fit a weighted binary classifier to

minimize eq. (2) with the current

weights {wn};
end

end

end

until convergence occurs or max iteration;

postprocessing: remove dead or pure subtrees;

regressor (if leaves are linear) on a subset of points that reach

the leaf. In the case of decision nodes, one can prove that the

original problem in eq. (1) reduces to the following weighted

binary classification problem on the training instances that

reach the node i :

min
θi

∑

n∈Ri

wnL(yn, fi(xn; θi)) + λφi(θi) (2)

where L is a 0/1 misclassification loss and yn ∈ {right,left} is

a “pseudolabel” indicating the child which gives a lower value

of E for instance xn under the current tree. Additionally, we

use a sparsity penalty φ(θi) = ‖θi‖1 to obtain more com-

pact models. Note that the original TAO formulation solves

unweighted binary classification problem instead. We further

approximate the loss in eq. (2) with a convex surrogate (e.g.

logistic) loss and solve it efficiently using LIBLINEAR [30].

We denote decision trees trained with the TAO algorithms as

TAO trees to distinguish between conventional trees.

C. Training a tree with the boosting weights

Generic boosting framework involves fitting a base learner

(decision trees in our case) to minimize the weighted loss

function in eq. 1 at each boosting step, where the weights

{wn}Nn=1 come from a particular boosting algorithm. De-

pending on how tree learning is done, some algorithms may

not directly handle these weights in the loss. The problem

comes from the difficulty of learning decision trees, which are

non-differentiable functions. Therefore, various approximation

techniques are used to simulate the weights and one such tech-

nique is “resampling” [31]–[33] which is utilized by majority

of the practical AdaBoost implementations. The idea is to

sample N instances with replacement and with probabilities



TABLE I
ROTATION ANGLE AND IMAGE PATCH LOCATION (GIVEN AS X,Y COORDINATES OF THE LOWER LEFT AND UPPER RIGHT CORNERS, RESPECTIVELY) FOR

EACH CLASS OF THE MNIST REGRESSION PROBLEM.

class 0 1 2 3 4 5 6 7 8 9

angle −86◦ −10◦ −29◦ 16◦ 21◦ −23◦ −2◦ −52◦ −90◦ −5◦

patch [6 6 14 14] [10 11 18 19] [5 19 13 27] [15 14 23 22] [6 9 14 17] [3 17 11 25] [13 10 21 18] [12 6 20 14] [9 8 17 16] [5 10 13 18]

TABLE II
SPECIFICATIONS OF THE DATASETS USED IN OUR EXPERIMENTS.N IS

SAMPLE SIZE, D IS INPUT DIMENSION (NUMBER OF FEATURES) AND K IS

OUTPUT DIMENSION.

Dataset Ntrain Ntest D K

abalone 2 506 1 671 8 1
cpuact 4 915 3 277 21 1
CT slice 42 800 10 700 384 1
MNIST-rotated 60 000 10 000 784 64
YearPredictionMSD 463 715 51 630 90 1

{wn}Nn=1 for each data point. Indeed, their sum is always equal

to one due to the normalization applied after each boosting

step and each weight is equivalent to the “importance” of the

corresponding point.

On the other hand, the reduced optimization problem in

eq. (2) directly minimizes the weighted loss function which

involves solving a weighted binary classification problem (for

internal nodes). Although the given problem is NP-hard, it

can be solved efficiently by approximating it with a convex

surrogate (e.g. logistic) loss. Therefore, our base learners

presented in the previous section do not resample the training

set but rather directly handle the weighted losses which is

methodologically more justified approach according to the

problem formulation.

IV. EXPERIMENTS

We perform extensive evaluations of our proposed learning

method across a diverse group of datasets (see Table II)

from various domains: computer vision, signal processing, etc.

We compare against state-of-the-art and established regression

forests (e.g. XGBoost [17], Random Forest denoted as RF) that

have stood the test of time and other recent baselines: refined

RF [34], cRF [35], ARF [36], GIF [37]. Moreover, we em-

pirically analyze boosted TAO trees from various perspectives

such as hyperparameters choice.

Most of the datasets that we use are taken from the UCI

Machine Learning Repository [38], except MNIST which is

obtained from [39]. MNIST is originally designed for the

classification task and we modify it to obtain a regression

dataset as follows. We define a mapping that is locally linear

but globally severely nonlinear and where both the input and

output are high-dimensional. For each MNIST image, we

generate its ground-truth output yn ∈ R
K by picking 8 ×

8 patch of an image (patch location is defined separately for

each class) and apply a class-specific image rotation to that

patch. So, the output dimension is K = 64 resulting to the

multi-output regression task. We assign an angle in [−90◦ 90◦]

and a patch location at random to each class according to the

Table I. Dataset specifications can be found in Table II.

A. Setup

We implemented TAO in C++ (with support of a Python

interface). We initialize each TAO tree from a complete

binary tree of depth ∆ and having random weights at each

node. At each boosting step, we train a TAO tree using

I = 20 iterations throughout the experiments and tune a

sparsity penalty (λ in eq. (2)) separately for each dataset.

We parallelize the training of nodes at a given depth. We

implemented 2 versions of the boosted TAO trees: one with

constant leaves (R2 TAO-c) and another one with linear leaves

(R2 TAO-l). For solving the reduced problem in a leaf, we

either simply take average response values (for R2 TAO-c) or

solve ℓ1-regularized linear regression problem (a.k.a LASSO

[40]) implemented in scikit-learn [41]. For the latter one, we

set the same regularization penalty α = λ. For solving the

reduced problem in a decision (internal) node, we use an ℓ1-

regularized logistic regression solver in LIBLINEAR (v2.30

with support for instance weights) [30]. Here, the value of

the C in LIBLINEAR is inversely proportional to the λ,

i.e. C = 1/λ. Note that ℓ1-regularized logistic regression

in LIBLINEAR has randomized behavior, but for the fixed

random seed it is deterministic. However, in TAO, we cannot

control the order in which the rand() function in LIBLINEAR

is called during parallel training, and, therefore, our TAO

implementation is not deterministic. That said, this random

behavior is negligible since the difference that one can obtain

on the test error is not significant.

As for the baseline methods, we either use their available

implementations or report their published results (rRF [34],

cRF [35], ARF [36], GIF [37]). The most important baselines

are Random Forests (RF) and conventional AdaBoost with

CART-style trees (denoted as R2 CART). We use the Python

implementation in scikit-learn [41] for both of them. Gradient

boosting [12] is another important baseline. It fits approximate

functional descent in forward stagewise additive modeling. In

this paper, we use the XGBoost implementation (v0.81, Python

package). It is highly optimized and supports parallel training.

For all three methods above, we tune (as best as we could)

the most important hyperparameters: maximum depth ∆ of

the base learner, learning rate η (when applicable) and the

number of boosting iterations T (which is equivalent to the

number of trees or n_estimators). We report the mean

error (test) and standard deviation over 5 independent runs,

where the error is the rooted mean squared error (RMSE)

E =
√ 1

NK

∑N

n=1 ‖yn − ŷn‖22. Experiments were performed



TABLE III
COMPARISON OF DIFFERENT REGRESSION FORESTS, SORTED BY TEST

ERROR ETEST . FOR EACH DATASET, WE GIVE (N,D,K) = DATASET SIZE,
INPUT AND OUTPUT DIMENSIONS. WE REPORT THE TEST RMSE

(AVG±STDEV OVER 5 REPEATS), NO. OF PARAMETERS AND INFERENCE

FLOPS (NUMBERS IN PARENTHESES ARE ESTIMATES), NUMBER OF TREES

T AND MAXIMUM DEPTH OF THE FOREST ∆. BOOSTED TAO TREES ARE

IN BOLDFACE.

Forest Etest #pars. FLOPS T ∆

CART 3.01±0.01 2 891 20 1 20
XGBoost 2.22±0.00 31k (1 089) 100 10
XGBoost 2.20±0.00 220k (9 349) 1k 10
GIF [37] 2.18 (50k) – 10 –
TAO-c 2.18±0.05 287 41 1 6
R2 CART 2.16±0.01 53k (1k) 100 10
R2 CART 2.15±0.00 0.5M (10k) 1k 10

ab
al

o
n
e

RF 2.12±0.01 230k (2 473) 100 29
rRF [34] 2.10±0.01 (100k) (1 000) 100 10
ARF [36] 2.10±0.03 (100k) (1 000) 100 10
RF 2.10±0.00 2M (25k) 1k 34
R2 TAO-c 2.09±0.01 4.3k 1040 30 10
R2 TAO-c 2.08±0.01 15k 3470 100 10

CART 3.63±0.32 9 691 25 1 25
TAO-c 2.71±0.04 498 51 1 6
RF 2.62±0.04 0.6M (2 842) 100 36
ARF [36] 2.62±0.01 (98k) 750 50 15
R2 CART 2.61±0.16 72k (1k) 100 10

cp
u
ac

t

RF 2.60±0.01 6M (28k) 1k 37
XGBoost 2.60±0.00 40k (1 000) 100 10
XGBoost 2.57±0.00 294k (8 780) 1k 10
R2 CART 2.56±0.11 0.7M (10k) 1k 10
R2 TAO-c 2.40±0.01 22k 1 772 30 8
R2 TAO-c 2.32±0.00 92k 6 733 100 8

CART 2.71±0.06 85k 51 1 51
TAO-c 1.54±0.05 7k 1 123 1 7
R2 CART 1.48±0.03 122k (1 000) 100 10
XGBoost 1.45±0.00 71k (1 000) 100 10
R2 CART 1.31±0.01 1M (10k) 1k 10

C
T

sl
ic

e

XGBoost 1.18±0.00 465k (10k) 1k 10
RF 1.03±0.01 5M (5 818) 100 71
cRF [35] 1.00 (17M) – 1k –
RF 0.97±0.01 54M (57k) 1k 78
R2 TAO-c 0.59±0.00 441k 22k 30 8
R2 TAO-c 0.51±0.00 1.5M 77k 100 8
R2 TAO-c 0.31±0.00 4.2M 74k 100 12

CART 13.41±0.11 621k 49 1 49
RF 9.31±0.00 40M (5 237) 100 68
R2 CART 9.25±0.01 2.5M (1 500) 100 15
RF 9.23±0.00 401M (52k) 1k 73
R2 CART 9.21±0.03 24M (15k) 1k 15

Y
ea

rP
re

d
ic

ti
o
n
M

S
D

TAO-c 9.11±0.05 7k 448 1 8
XGBoost 9.04±0.00 103k (1 000) 100 10
XGBoost 9.01±0.00 1.1M (10k) 1k 10
cRF [35] 8.90 (184M) – 1000 –
R2 TAO-c 8.85±0.00 1.2M 13k 30 10
R2 TAO-c 8.83±0.00 3.9M 45k 100 10
R2 TAO-l 8.82±0.00 874k 22k 50 7

CART 28.51±0.11 119k 49 1 49
RF 17.87±0.04 7.6M (4 669) 100 59
RF 17.18±0.03 71M (42k) 1k 61
XGBoost 16.79±0.00 44M (84k) 3.2k 25

M
N

IS
T

-r
o
ta

te
d

R2 CART 16.65±0.09 109M (80k) 3.2k 25
R2 TAO-c 15.93±0.06 7M 32k 30 14
R2 TAO-c 15.60±0.05 12M 55k 50 14
TAO-l 15.22±0.54 20k 1 137 1 7
R2 TAO-l 8.87±0.05 1.4M 68k 30 7

on Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz. For

implementations that support parallel processing, we set the

number of threads to 8.

B. Results

Table III reports the results (sorted by decreasing test error)

on single and multi-output (see MNIST-rotated) datasets. We

differentiate two versions of the AdaBoost as follows: “R2

CART” is the conventional AdaBoost (R2 version) which

employs CART trees, whereas “R2 TAO” is our modification.

First of all, results indicate that even a single TAO tree (T = 1)

already performs well by outperforming some forests (e.g. in

“CT slice” and “YearPredictionMSD”) which advocates for

the power of optimization in tree learning. Next, consider

ensembles of boosted TAO trees (T > 1). Our experimental

results show that they achieve the lowest test error in all

datasets, often by quite a considerable margin (e.g. MNIST-

rotated, YearPredictionMSD). Moreover, our resulting forests

have a fewer number of trees and they are shallower. For

example, in most of these datasets, TAO achieves the lowest

error with just 30 trees. However, it is also true that our oblique

trees use more parameters at each decision node (since they

are linear). Therefore, we also report the actual number of

parameters and our estimates of the inference FLOPS (see

below on how we estimate them) and they show that TAO

forests have comparable model sizes. This is partly due to the

sparsity penalty that we apply.

Next, we perform a more challenging task to validate

the performance on multi-output regression (i.e. output is

a continuous vector) task. To do so, we create a synthetic

problem where the input is an MNIST digit (of dimension

D = 28 × 28 grayscale pixels) and the output is an image

patch created using a nonlinear transformation (as described

above). The last section of the Table III shows the results.

Boosted TAO trees achieve significantly better accuracy on this

multioutput regression problem. This is especially true with the

forest of TAO-l, where its error is twice as low as the second

best model. Please note that, for both TAO-c and TAO-l, we

are not creating a separate tree for each output dimension,

but rather handle it at each leaf, i.e. each leaf outputs a

vector in R
K whereas previous boosting implementations (e.g.

XGBoost) usually create K separate trees at each boosting

step.

Estimating model sizes. We use the following methodology

to calculate model sizes reported in Table III. For tree ensem-

bles, it is calculated by summing up individual model (tree)

sizes. The number of parameters of a single tree is equal to

the sum of the number of parameters of all its nodes. For axis-

aligned trees, it is equal to 2 (feature index and a threshold),

and for oblique trees, this equals to the number of nonzero

weights and can be at most D + 1 (input feature dimension

and a bias term). Similarly, the number of parameters in a

leaf is equal to K (output dimension) for constant leaves and

at most (D + 1)K for linear leaves. We estimate inference

FLOPS for a single tree as the number of parameters an input

instance encounters in the root-to-leaf path. We calculate the



Etrain Etest

0 20 40 60 80 100

0

1

2

3

4

C
T

sl
ic

e

0 20 40 60 80 100
0

1

2

3

4

0 20 40 60 80 100

1

2

3

4

cp
u
ac

t

Number of trees

0 20 40 60 80 100
2

2.5

3

3.5

4

Number of trees

Fig. 1. Comparison of different regression forests on the CT slice and cpuact datasets as a function of the number of trees. “R2” refers to AdaBoost.R2,
“RF” refers to Random Forest. All errors are RMSE.
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inference FLOPS for each instance in the training set, and

report the average result. For some methods where we do not

have access to the trees (this includes cited results), we provide

an upper bound on the number of parameters and inference

FLOPS. We use the following assumptions in the calculation

of upper bounds: number of parameters—we upper bound the

number of decision (internal) nodes and the number of leaf

nodes in a single tree by min(N, 2∆ − 1) and min(N, 2∆),
respectively (N is the number of training points); inference

FLOPS—we assume each root-leaf path to have depth ∆.

C. Direct comparison of the base learners: TAO trees vs CART

trees

In fig. 1, we plot the test and train errors of the different tree

ensembles as a function of the number of trees for the CT slice

and cpuact datasets. For any fixed number of trees, R2-TAO-c

achieves considerably better test error than all the other

regression forests. The most important baseline is R2 CART

since it uses the same boosting framework (AdaBoost.R2) but

different base learners. Arrows on the right plots illustrate

the improvement in performance achieved by replacing CART

trees with TAO trees as base learners in AdaBoost.R2. We can

clearly see a significant difference on the test error for the

chosen two datasets and we have observed similar behavior in

other datasets, too. It is worth mentioning that we have tuned

hyperparameters for all algorithms as best as we could. This

result clearly shows the superiority of oblique trees and the

power of optimization performed by TAO.

D. Model hyperparameters

The most important hyperparameters in AdaBoost.R2 are

the learning rate η (or shrinkage factor) and depth ∆ of

the individual learner. In fig. 2, we explore how these two

hyperparameters affect the performance of our boosted TAO

trees. According to the literature, the shrinkage factor η has a

significant impact on model generalization [7]. Indeed, these

figures show that the test error varies as we try different values

for η. It seems that the larger values of η achieve the lowest

train error, however it may result to overfitting (left bottom

plot). Nevertheless, defining a good value for η depends on

problem and one might need to tune this hyperparameter (e.g.

using cross-validation) to find the best option. Comparison of

different ∆ suggests that it should be as large as possible but

avoiding overfitting.

V. CONCLUSION

Our idea is to boost more powerful oblique trees which are

better optimized thanks to the TAO algorithm. In this paper, we

showed that a simple boosting technique such as AdaBoost.R2

together with TAO trees demonstrates excellent results for

regression problems both in terms of accuracy and model

size (we have also verified similar gains using AdaBoost.M1

and SAMME, two other different versions of AdaBoost [42]).

Additionally, the proposed method is relatively simple to

implement and use. As for the training time, AdaBoost trains

each base model sequentially and TAO non-greedily optimizes

over the parameters of a tree which adds additional cost to

the runtime. Despite the parallelism inside TAO, experiments

show quite slower runtime compared to Random Forests

and XGboost, but similar runtime w.r.t. traditional AdaBoost.

However, such long runtime is reasonable and justified by

the consistently low test error they achieve. This makes our

boosted trees a powerful machine learning framework which

can be widely-used in many applications including: signal

processing, computer vision, data mining, and many others.
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esnay, “Scikit-learn: Machine learning in Python,” J. Machine Learn-

ing Research, vol. 12, pp. 2825–2830, Oct. 2011, available online at
https://scikit-learn.org.

[42] M. Gabidolla, A. Zharmagambetov, and M. Á. Carreira-Perpiñán, “Im-
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