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Abstract

Regression forests, based on ensemble ap-

proaches such as bagging or boosting, have

long been recognized as the leading off-the-shelf

method for regression. However, forests rely on

a greedy top-down procedure such as CART to

learn each tree. We extend a recent algorithm

for learning classification trees, Tree Alternat-

ing Optimization (TAO), to the regression case,

and use it with bagging to construct regression

forests of oblique trees, having hyperplane splits

at the decision nodes. In a wide range of datasets,

we show that the resulting forests exceed the

accuracy of state-of-the-art algorithms such as

random forests, AdaBoost or gradient boosting,

often considerably, while yielding forests that

have usually fewer and shallower trees and hence

fewer parameters and faster inference overall.

This result has an immense practical impact and

advocates for the power of optimization in en-

semble learning.

1. Introduction

We consider regression, the problem of learning a function

that predicts a continuous scalar or vector from an input

feature vector. Forests (ensembles of trees) are widely rec-

ognized as the leading off-the-shelf regression methods. In

many datasets, we can expect a forest to achieve close to

optimal performance compared to other methods with little

hyperparameter tuning. This has made them very widely

applied in data mining (Verikas et al., 2011), computer vi-

sion (Criminisi et al., 2012; Criminisi & Shotton, 2013; Vi-

ola & Jones, 2004) and other areas.

However, why forests work so well is not completely un-
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Carreira-Perpiñán <mcarreira-perpinan@ucmerced.edu>.

Proceedings of the 37
th International Conference on Machine

Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

derstood. They are constructed, at least in part, using

heuristic techniques, without directly optimizing an objec-

tive function—unlike most other machine learning models,

which define an objective over the model parameters and

optimize it, usually with gradient-based methods. In partic-

ular, forests need a way to train individual trees, and in the

most successful forests, such as random forests (Breiman,

2001) or gradient boosting (Friedman, 2001), this is done

using the CART algorithm (Breiman et al., 1984) or a varia-

tion of it such as C4.5 (Quinlan, 1993). In these algorithms,

one starts with a root node, splits it using a heuristic crite-

rion and proceeds recursively with its children, top-down,

stopping at some point using a variety of criteria. The algo-

rithm is greedy in that after each split the node’s decision

function is fixed. This and the fact that the algorithm does

not optimize an objective function directly over the tree pa-

rameters makes CART produce severely suboptimal trees

(Hastie et al., 2009).

Given this state of affairs, it is remarkable that CART and

C4.5 have remained the state-of-the-art for decades for

training both single trees and forests. The reason is that

tree optimization is a very difficult problem, NP-hard in

most formulations (Hyafil & Rivest, 1976; Hancock et al.,

1996), to which gradient methods do not apply. Thus, while

many other tree optimization algorithms have been pro-

posed, none has been able to do significantly better. Also,

the vast majority of trees in practice, whether single or en-

sembled, are axis-aligned (where each split tests a single

feature rather than a combination of features) and each leaf

outputs a constant prediction.

We propose to improve regression forests by improving the

optimization of each regression tree, and by allowing the

use of more general types of trees. To do this, we build

on a recently proposed algorithm for learning classifica-

tion trees, Tree Alternating Optimization (TAO) (Carreira-

Perpiñán & Tavallali, 2018; Carreira-Perpiñán, 2020). TAO

optimizes a parametric tree of fixed structure, monoton-

ically decreasing its 0/1 classification loss at each itera-

tion. It applies to trees beyond axis-aligned splits (such as

oblique splits) and constant-predictor leaves (such as lin-

ear), is scalable, and produces far more accurate classifica-

tion trees than CART. We adapt TAO to the regression case
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and then use it in combination with bagging to learn forests

of oblique trees. The resulting forests show remarkable

performance: they beat state-of-the-art algorithms such as

random forests, gradient boosting or AdaBoost in accuracy,

consistently over all datasets and by a considerable margin,

while usually having fewer parameters and faster inference.

2. Related Work

Regression forests is a well-established area and various

books provide extensive reviews (Zhou, 2012; Kuncheva,

2014; Hastie et al., 2009). The prediction of the forest

is usually the average of the individual tree predictions.

Learning a regression forest is generally done based on a

procedure for training individual trees and a procedure for

ensembling different trees. We review both of these.

The most widespread way to learn individual trees is

by a greedy top-down induction method such as CART

(Breiman et al., 1984), C4.5 (Quinlan, 1993) and variations

thereof. Splitting a node is achieved by approximately op-

timizing a variance-based criterion that is indirectly related

to the loss of the overall tree. This criterion depends in a

discrete way on which instances go to each child. Opti-

mizing it is easy for axis-aligned (univariate) splits by enu-

merating all possible features, but it is difficult for oblique

(hyperplane) splits. In practice with both single trees and

forests, axis-aligned trees where each leaf predicts a con-

stant output are the norm. Also, while for single trees the

size of the tree must be carefully determined to avoid over-

fitting (by early stopping or post-pruning), in a forest trees

are usually grown fully, until each leaf contains one (or a

few) instances. Finally, some forest methods use random

splits rather than a variance-based criterion, such as Extra-

Trees (Geurts et al., 2006); while other forests use very

simple trees, such as stumps (depth-1 trees), for which a

specialized learning algorithm exists.

The main approaches for ensembling different trees are

based on bagging (Breiman, 1996), where individual trees

are trained independently on boostrap samples of the data;

or on boosting (Schapire, 1990; Schapire & Freund, 2012),

where individual trees are trained sequentially on the whole

data but with adaptively weighted instances. Many vari-

ations of these exist. Random Forests (Breiman, 2001;

Biau & Scornet, 2016) combine bagging with choosing

random feature subsets at each node when considering can-

didate splits. Extremely randomized trees (Extra-Trees)

(Geurts et al., 2006) combine bagging with random splits.

AdaBoost (Freund & Schapire, 1997; Schapire & Fre-

und, 2012) is probably the most practical of all boosting

algorithms, although gradient boosting (Friedman, 2001)

has attracted much attention in recent years, particularly

with the availability of efficient implementations that can

scale to large datasets (Chen & Guestrin, 2016; Ke et al.,

2017). Other variations include random subspace forests

(Ho, 1998) and rotation forests (Rodrı́guez et al., 2006).

After several decades where regression forests have been

actively researched, it is fair to say that the methods that at

present are recognized as the state-of-the-art are Random

Forests, AdaBoost and gradient boosting.

Other methods exist which combine the individual tree

learning with the ensembling or which use more complex

node models (Schulter et al., 2013; Tanno et al., 2019; Be-

gon et al., 2017). The training algorithm in such methods

is quite more complicated and it is not clear that it trans-

lates into more accurate or compact forests, although they

may be preferable in particular applications. Most regres-

sion forests use the squared error to fit the leaves, but it is

also possible to use robust losses (Li & Martin, 2017). A

few works propose forests of oblique trees (Breiman, 2001;

Frank & Kramer, 2004; Menze et al., 2000; Zhang et al.,

2017), but they mostly focus on classification rather than

regression and improve marginally over axis-aligned trees.

Finally, some techniques exist to take an existing forest and

postprocess it. Pruning a forest by removing redundant

trees can be done greedily with forward selection (Zhou,

2012). This can often reduce the size of a forest with little

degradation of its accuracy. Also, it is possible to opti-

mize jointly the constant predictors at the leaves of all trees

(keeping the decision nodes and tree structure the same)

and increase the accuracy a bit (Ren et al., 2015). These

techniques are complementary to our work, as they can

be applied to any existing regression forest with constant-

predictor leaves.

3. Tree Alternating Optimization for

Regression1

3.1. Definition of the Tree and Optimization Problem

Consider a rooted directed binary tree (each decision node

has two children) of a given, predetermined structure (of

depth ∆, not necessarily complete) with nodes indexed

in set N and parameters Θ = {θi}i∈N . Each deci-

sion node i has a decision function fi(x; θi): R
D → Ci,

where Ci = {lefti, righti} ⊂ N , sending instance

x to the corresponding child of i. We consider oblique

trees, having hyperplane decision functions “go to right if

wT
i x + wi0 ≥ 0” (where θi = {wi, wi0}); axis-aligned

(univariate) trees are a special case wherewi is an indicator

vector for a single feature. Each leaf i has a predictor func-

tion gi(x; θi): R
D → R

K that produces the actual output.

We consider constant predictors gi(x; θi) = wi and linear

predictors gi(x; θi) = Wix+wi (where θi = {Wi,wi}).
The tree’s prediction T(x;Θ) for an instance x is obtained

1A more general version of the Tree Alternating Optimization
(TAO) algorithm is given by Carreira-Perpiñán (2020).
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by routing x from the root to exactly one leaf and apply-

ing its predictor. We do not consider soft trees where x is

routed to each leaf with a certain probability.

We consider the problem of learning the parameters of a

regression tree of given structure by minimizing:

E(Θ) =

N
∑

n=1

L(yn,T(xn;Θ)) + α
∑

i∈N

φi(θi) (1)

given a training set {(xn,yn)}Nn=1 ⊂ R
D × R

K . The loss

function L(y, z) measures the disagreement between two

vectors y (ground-truth label) and z (tree prediction); we

use the squared error ‖y − z‖22 (although it is possible to

use other losses, such as the least absolute deviation or a

robust loss). The regularization term penalizes the param-

eters θi of each node, where φi is e.g. a norm such as ℓ1
or ℓ2. The hyperparameter α ≥ 0 controls the tradeoff

between the loss and the regularization. We define the re-

duced set Ri ⊂ {1, . . . , N} of node i (decision node or

leaf) as the training instances that reach i given the current

tree parameters.

Our TAO algorithm for regression is based on 3 theorems.

We give them next and explain them afterwards; the proof

is given in the suppl. mat. and in Carreira-Perpiñán (2020).

We say that S ⊂ N is a set of non-descendant nodes if

∀i, j ∈ S neither i is a descendant of j nor j is a descendant

of i in the tree graph. We assume that the parameters are

not shared across nodes: i, j ∈ N , i 6= j ⇒ θi ∩ θj = ∅.

Theorem 3.1 (Separability). Let T(x;Θ) be the predictive

function of a rooted directed decision tree and S ⊂ N a

nonempty set of non-descendant nodes in the tree. Then, as

a function of the parameters {θi: i ∈ S} (i.e., fixing all

other parameters Θrest = Θ \ {θi: i ∈ S}), the function

E(Θ) of eq. (1) can be equivalently written as

E(Θ) =
∑

i∈S

Ei(θi,Θrest) + Erest(Θrest) (2)

where {Ei: i ∈ S} and Erest are certain functions.

This follows from the fact that the reduced sets of nodes i
and j are disjoint, because the tree makes hard decisions.

Theorem 3.2 (Reduced problem over a decision node).

Consider the objective function E(Θ) of eq. (1) and a de-

cision node i. Assume the parameter values Θ\ {θi} of all

the nodes except i are fixed. Then, as a function of θi, we

can write eq. (1) equivalently as:

E(Θ) = Ei(θi) + Erest(Θ \ {θi}) with

Ei(θi) =
∑

n∈Ri

lin(fi(xn; θi)) + αφi(θi) (3)

where Ri is the reduced set of node i, and we define the

function lin: Ci → R as lin(z) = L(yn,Tz(xn;Θz)) for

any z ∈ Ci (child of i), where Tz(·;Θz) is the predictive

function for the subtree rooted at node z.

Hence, the optimization problemminθi
E(Θ) is equivalent

to the following optimization problem:

min
θi

Ei(θi) =
∑

n∈Ri

Lin(yin, fi(xn; θi)) + αφi(θi) (4)

where the weighted 0/1 loss Lin(yin, ·): Ci → R
+ ∪ {0}

for instance n ∈ Ri is defined as Lin(yin, y) = lin(y) −
lin(yin) ∀y ∈ Ci, where yin = argminy∈Ci

lin(y) is the

“best” child of i for n (or any yin ∈ argminy∈Ci
lin(y) in

case of ties).

This follows from the fact that all a decision node can do

with an instance is send it down its left or right child, and

the ideal choice is the one that results in the best prediction

downstream from that node.

Theorem 3.3 (Reduced problem over a leaf). Consider the

objective function E(Θ) of eq. (1) and a leaf node i. As-

sume the parameter values Θ\{θi} of all the nodes except

i are fixed. Then, as a function of θi, we can write eq. (1)

equivalently as:

E(Θ) = Ei(θi) + Erest(Θ \ {θi}) with

Ei(θi) =
∑

n∈Ri

L(yn,gi(xn; θi)) + αφi(θi) (5)

where Ri is the reduced set of node i.

Theorem 3.1 says that E(Θ) becomes an additively sep-

arable function of the non-descendant nodes’ parameters

given the parameters of all other nodes. The specific form

of the resulting function for each node is given by the

next theorems. For a decision node, the function lin(z) =
L(yn,Tz(xn;Θz)) maps a child z ∈ Ci of node i to the

value of the loss L incurred by instance xn in the leaf that

it reaches when propagated down z’s subtree. The reduced

problem of eq. (4) is a weighted 0/1 loss binary classifi-

cation problem with binary pseudolabels {yin}, defined as

the child of i that gives the best prediction for xn under the

current tree; see section 3.3. For a leaf, the reduced prob-

lem is simple: fit the leaf’s predictor to the instances (and

ground-truth labels) in its reduced set to minimize the orig-

inal loss. For constant predictors, this gives the reduced

set mean; for linear ones, we solve an ℓ1-penalized linear

regression (Lasso; Hastie et al., 2015).

The separability condition is similar to that of TAO for clas-

sification (Carreira-Perpiñán & Tavallali, 2018), but the re-

duced problems are different: for a decision node it is a

weighted 0/1 binary classification, not unweighted; and for

a leaf it is a regression rather than a classification.
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3.2. TAO Algorithm for Regression Trees

Although the previous derivations appear complicated, the

algorithm works in a simple way in the end (see algo-

rithm 1): we repeatedly update nodes’ parameters until

convergence. We can update in parallel nodes that are not

descendants of each other (from the separability condition).

In this paper, we do this in breadth-first search (BFS) order,

i.e., we update in parallel all nodes at the same depth; one

pass over the entire tree defines a TAO iteration. Updating

a node requires solving its reduced problem via a binary

classifier (decision node) or regressor (leaf). After each it-

eration, the objective (1) decreases or stays unchanged. We

stop iterating when eq. (1) changes little or we reach a set

number of iterations.

Finally, we can remove dead subtrees from the tree, i.e.,

nodes receiving no training instances, as done in Carreira-

Perpiñán & Tavallali (2018). This is particularly likely

to happen with an ℓ1 regularizer on the decision nodes or

leaves, which encourages weights to become zero (a deci-

sion node with wi = 0 creates a dead subtree).

We emphasize that, unlike in traditional tree induction al-

gorithms such as CART or C4.5, with TAO we do not grow

a tree greedily. Instead, we assume a parametric tree with

a given structure, just as when we train a neural net we

choose an architecture and then optimize its parameters.

That said, the final tree structure can be smaller than the

initial one, similarly to pruning a deep net.2

3.3. Solving the Decision Node Optimization Problem

Theorem 3.2 shows that the reduced problem for a decision

node is a weighted 0/1 loss binary classification problem

on the node’s reduced set instances. It is binary because

the output of the decision function must be either the left or

the right child. It is weighted because the loss of the best

child is different for each instance. Optimizing the (un-

weighted) 0/1 loss over a hyperplane and other variants of it

is an NP-hard problem (Hoffgen et al., 1995; Pitt & Valiant,

1988; Megiddo, 1988; Ben-David et al., 2003) (except for

axis-aligned hyperplanes, which can be solved exactly and

quickly by enumeration over the features). However, good

approximate solutions can be obtained efficiently by using

a convex surrogate loss. We use the logistic loss and an ℓ1
regularizer, hence we train an ℓ1-penalized logistic regres-

sion (for which well-developed code exists, such as LIB-

LINEAR; Fan et al., 2008). This must be adapted to handle

the weights in the 0/1 loss, and we explored several ap-

proaches (such as resampling or repeating instances; see

2Indeed, by fixing the tree structure and making it a parametric
model, regularization via an ℓ1 norm promotes sparsification and
pruning in a similar way to a Lasso (Hastie et al., 2015) or to
neural net pruning (Carreira-Perpiñán & Idelbayev, 2018).

Algorithm 1 TAO regression tree algorithm (BFS order)

input: training set; initial tree T(·;Θ) of depth ∆
N0, . . . ,N∆ ← nodes at depth 0, . . . ,∆, respectively

R1 ← {1, . . . , N}
repeat

for d = 0 to ∆ do

parfor i ∈ Nd do

if i is a leaf then

θi ← train regressor gi on reduced setRi

else

θi ← train decision function fi onRi

compute the reduced sets of each child of i
end if

end parfor

end for

until stop

prune dead subtrees of T

return T

Note: to compute the reduced set of each of node i’s chil-

dren we pass each instance xn in i’s reduced setRi through

i’s decision function fi, and add xn to the resulting child’s

reduced set.

suppl. mat.). We found it best to use the weights directly as

multipliers in the logistic loss.

It is possible that the approximate solution has a (slightly)

higher value of objective (4) than the current parameters

θi. This does occasionally happen, usually near conver-

gence of TAO. We can always ensure decrease of the re-

duced problem objective, hence of the overall tree objec-

tive (1), by rejecting the update if it is worse and leaving

that node unchanged. However, in practice we find it is

better to accept the update always, since the increase in the

objective is small and it evens out as one keeps iterating.

3.4. Computational Complexity

The computational complexity of training one TAO regres-

sion tree is as follows. For TAO-c (constant leaves), the

complexity of one TAO iteration (pass over all nodes) is

upper bounded by the tree depth times the cost of solving

a logistic regression on the whole training set. This can be

estimated as in Carreira-Perpiñán & Tavallali (2018) (who

considered classification trees). Consider all the nodes i
at a given depth. Each node solves a reduced problem on

a subset Ci of the training set, of size Ni. The subsets Ci
from these nodes are disjoint so their aggregated size is at

most N . Each node solves a logistic regression on its sub-

set Ci in time O(DNα) for α ≥ 1 (which is similar to the

time it takes to solve an SVM, although exactly what this is

depends on the SVM solver; Bottou & Lin, 2007, section

4.2). Hence, since
∑

i N
α
i ≤

(
∑

i Ni

)α ≤ Nα if α ≥ 1,
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solving all the logistic regressions at the same depth is at

most as costly as solving a single logistic regression on all

N points. The overhead of propagating points through the

tree to determine the subsets is negligible compared to this.

For TAO-l (linear leaves), the cost is slightly larger because

each leaf solves a linear regression rather than computing a

majority vote (as in classification trees). However, this cost

is again of the same order as solving for the decision nodes,

so the overall computational complexity is the same.

4. Regression Forests of Bagged TAO Trees

There are many ways to ensemble individual learners, such

as bagging, boosting, etc. In this paper we choose a simple

one: we train each TAO tree independently on a random

subset of M samples of the available training data (N in-

stances). A particular, simple case of this is bagging, where

the subset is a bootstrap sample (M = N but sampled with

replacement; Breiman, 1996). As we will see, the best ac-

curacy is obtained by tuning M . Bagging may sometimes

be preferable, as it strikes a good tradeoff between accu-

racy (often close to that of the best M ) and simplicity (it

does not need to tune M ). We initialize each TAO tree

from a complete tree of depth ∆ and random node parame-

ters (each node’s weight vector has Gaussian (0,1) entries,

and then we normalize the vector to unit length). The trees

can be trained in parallel, just as with random forests. The

forest prediction is the average of its trees’ predictions.

Although our TAO regression algorithm works with axis-

aligned trees, in this paper we only use oblique trees. These

are more powerful, since they can better model correla-

tions between features, and indeed the resulting forests

achieve much higher accuracy. Regarding the leaf pre-

dictors, we show experiments using constant- and linear-

predictor leaves. However, the latter are the clear winner in

both accuracy and forest size.

We train each tree with an ℓ1 regularizer but set its hyper-

parameter α to a small value (0.01). This has the effect of

applying sparsity (both within the decision node and leaf

weights, and in pruning the tree) only if it does not hurt the

accuracy appreciably. So the only important hyperparame-

ters of the forest are the depth ∆ and number of trees T .

5. Experiments

The goal of this section is to provide convincing evidence

that our TAO regression forests consistently dominate many

competing forest algorithms in accuracy, often by a large

margin, while using fewer parameters and faster inference

time. This is true with practically no exceptions across a

range of benchmarks of varying type, sample size and in-

put or output dimensionality. Notably, the accuracy of a

single TAO regression tree far beats that of a CART tree (in

agreement with the comparison reported by Zharmagambe-

tov et al. (2020) for classification and regression), and is of-

ten comparable to that of other forests, which demonstrates

the better optimization done by TAO. We start with com-

parison results on benchmarks and MNIST (sections 5.2–

5.3) as well as training time (section 5.4). Then, we ana-

lyze the impact of different diversity mechanisms and hy-

perparameters (section 5.5), which helps us to determine

how best to construct a TAO regression forest. Through-

out, TAO-c and TAO-l stand for TAO regression forests of

oblique trees with constant- and linear-predictor leaves, re-

spectively. The suppl. mat. has additional results.

5.1. Experiment Settings

We compare TAO with the state-of-the-art tree ensembling

algorithms: Random Forests (RF) (Breiman, 2001), Extra-

Trees (ET) (Geurts et al., 2006), AdaBoost (Freund &

Schapire, 1997) (all using the Python scikit-learn imple-

mentation; Pedregosa et al., 2011); and gradient boosting

(Friedman, 2001) (using the highly optimized XGBoost

implementation; Chen & Guestrin, 2016). We explored as

best as we could their hyperparameters, often improving

over reported results in the literature (for the same dataset

and method, e.g. for RF in several datasets in Schulter et al.,

2013). In particular, we tried different choices of the num-

ber of trees T and maximum depth ∆. We do not restrict

the max depth hyperparameter for RF and ET, and allow

each tree to grow fully, as is recommended for random

forests (Breiman, 2001). But we do tune this hyperparame-

ter for XGBoost and AdaBoost. We also compare with pub-

lished results of some recent forest algorithms: Alternating

Regression Forests (ARF) (Schulter et al., 2013), Adaptive

Neural Trees (ANT) (Tanno et al., 2019), Globally Induced

Forest (GIF) (Begon et al., 2017), Consistent Random For-

est (cRF) (Denil et al., 2014), Refined Random Forest (rRF)

(Ren et al., 2015) and Robust Forests (Li & Martin, 2017).

Finally, we also give the result of training a single CART

tree (Breiman et al., 1984) for reference. As for TAO, we

train each tree on a 90% random sample of the training

data using 40 iterations. We implemented TAO in Python.

All reported errors are root mean squared error (RMSE)

E =
√

1

NK

∑N

n=1
‖yn − ŷn‖2 unless otherwise specified,

where N is sample size, K is output dimension, and y and

ŷ are the ground truth and predicted vectors, respectively.

See the suppl. mat. for detailed information on the datasets,

comparison methods and hyperparameters.

5.2. Standard Machine Learning Benchmarks

Tables 1–2 report the results on several regression bench-

marks of sample size N , input dimension D and output

dimension K . The output dimension K is quite low, rang-

ing from 1 to 7, as is common in many regression papers.
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Table 1. Performance comparison of different regression forest

methods, sorted by decreasing test error Etest. Datasets: abalone,

ailerons, cpuact, CT slice; for each, we give (N,D,K) = sam-

ple size and input and output dimensionality. We report the test

RMSE (avg±stdev over 5 repeats), number of parameters and in-

ference FLOPS (numbers in parentheses are estimates), number

of trees T and maximum depth of the forest ∆. TAO forests are

in boldface (TAO-c: constant leaves; TAO-l: linear leaves).

Forest Etest #pars. FLOPS T ∆

CART 3.01±0.01 2 891 20 1 20
XGBoost 2.22±0.00 31k (1 089) 100 10
XGBoost 2.20±0.00 220k (9 349) 1k 10
GIF 2.18 (50k) – 10 –
TAO-c 2.18±0.05 287 41 1 6
AdaBoost 2.16±0.01 53k (1k) 100 10
AdaBoost 2.15±0.00 0.5M (10k) 1k 10
ET 2.14±0.00 443k (3 011) 100 36

ab
al

o
n
e

(4
k
,8

,1
)

RF 2.12±0.01 230k (2 473) 100 29
rRF 2.10±0.01 (100k) (1 000) 100 10
ARF 2.10±0.03 (100k) (1 000) 100 10
RF 2.10±0.00 2M (25k) 1k 34
TAO-c 2.08±0.01 9k 1 307 30 6
TAO-l 2.07±0.01 303 40 1 5
TAO-c 2.05±0.01 33k 1 718 30 8
TAO-l 2.04±0.01 8k 1 204 30 5

CART 2.88±0.00 103 9 1 9
RF 1.84±0.02 875k (3 512) 100 45
ET 1.84±0.00 1.4M (4 068) 100 49
ARF 1.78±0.01 (36k) (750) 50 15
AdaBoost 1.77±0.01 18k (1 175) 100 15
TAO-c 1.76±0.02 681 87 1 6
rRF 1.75±0.02 (71k) (1 000) 100 10

ai
le

ro
n
s

(E
×

1
0
−
4
,1

4
k
,4

0
,1

)

RF 1.75±0.00 9M (35k) 1k 47
AdaBoost 1.75±0.00 200k (12k) 1k 15
XGBoost 1.74±0.00 2k (300) 100 7
TAO-l 1.74±0.01 447 93 1 5
XGBoost 1.72±0.00 4k (1 264) 1k 7
TAO-c 1.67±0.04 21k 2 513 30 6
TAO-l 1.66±0.04 27k 2 611 30 5

CART 3.63±0.32 9 691 25 1 25
TAO-c 2.71±0.04 498 51 1 6
RF 2.62±0.04 0.6M (2 842) 100 36
ARF 2.62±0.01 (98k) 750 50 15
AdaBoost 2.61±0.16 72k (1k) 100 10
RF 2.60±0.01 6M (28k) 1k 37

cp
u
ac

t
(8

k
,2

1
,1

)

XGBoost 2.60±0.00 40k (1 000) 100 10
ET 2.58±0.03 1M (3 733) 100 45
TAO-l 2.58±0.02 246 41 1 5
XGBoost 2.57±0.00 294k (8 780) 1k 10
AdaBoost 2.56±0.11 0.7M (10k) 1k 10
ET 2.49±0.03 10M (38k) 1k 50
TAO-c 2.39±0.05 24k 1 590 30 7
TAO-l 2.35±0.01 8k 1 179 30 5

CART 2.71±0.06 85k 51 1 51
TAO-c 1.54±0.05 7k 1 123 1 7
AdaBoost 1.48±0.03 122k (1 000) 100 10
XGBoost 1.45±0.00 71k (1 000) 100 10
AdaBoost 1.31±0.01 1M (10k) 1k 10
XGBoost 1.18±0.00 465k (10k) 1k 10

C
T

sl
ic

e
(5

4
k
,

3
8
4
,1

)

TAO-l 1.16±0.02 5k 768 1 5
ET 1.06±0.01 85M (62k) 100 82
RF 1.03±0.01 5M (5 818) 100 71
cRF 1.00 (17M) – 1k –
RF 0.97±0.01 54M (57k) 1k 78
TAO-c 0.89±0.02 214k 31k 30 7
TAO-l 0.71±0.02 165k 23k 30 5
TAO-l 0.58±0.03 242k 25k 30 6

Table 2. Like table 1 but for YearPredictionMSD, SARCOS.

Forest Etest #pars. FLOPS T ∆

CART 13.41±0.11 621k 49 1 49
RF 9.31±0.00 40M (5 237) 100 68
ET 9.31±0.00 77M (6 091) 100 73
AdaBoost 9.25±0.01 2.5M (1 500) 100 15
RF 9.23±0.00 401M (52k) 1k 73
AdaBoost 9.21±0.03 24M (15k) 1k 15
TAO-c 9.11±0.05 7k 448 1 8

Y
ea

rP
re

d
ic

tM
S

D
(5

1
5
k
,9

0
,1

)

TAO-l 9.08±0.03 2k 388 1 6
XGBoost 9.04±0.00 103k (1 000) 100 10
XGBoost 9.01±0.00 1.1M (10k) 1k 10
cRF 8.90 (184M) – 1000 –
TAO-c 8.90±0.01 186k 13k 30 7
TAO-l 8.87±0.01 73k 12k 30 6
TAO-c 8.85±0.01 246k 14k 30 9
TAO-l 8.83±0.01 148k 12k 30 7

CART 3.62±0.00 84k 23 1 21
TAO-c 2.44±0.04 71k 202 1 14
RF 1.56±0.01 5.1M (2 997) 100 30
RF 1.54±0.01 51M (30k) 1k 30
AdaBoost 1.40±0.01 1.2M (7k) 700 10
TAO-c 1.36±0.03 2M 5 796 30 14
AdaBoost 1.33±0.03 12M (70k) 7k 10

S
A

R
C

O
S

(4
9
k
,2

1
,7

)

TAO-c 1.30±0.03 6.5M 10k 50 15
XGBoost 1.24±0.00 774k (7k) 700 10
ANT 1.18 104k 62k 1 –
ANT 1.11 598k 361k 8 –
XGBoost 1.10±0.00 4M (70k) 7k 10
TAO-l 1.04±0.02 18k 151 1 10
TAO-l 0.85±0.02 694k 4 833 30 10

For ET, RF, AdaBoost and XGBoost (which we ran our-

selves), we obtain similar results in terms of accuracy as

those reported in previous works (e.g. Schulter et al., 2013,

Ren et al., 2015, etc.). In general, XGBoost and particu-

larly AdaBoost take much longer to train. They also gen-

erate forests with many more trees if the output is high-

dimensional (K times more trees if there are K outputs).

ETs and RFs are simplest to use in terms of hyperparame-

ter choice and have extremely high training speed.

Let us look at TAO closely (boldfaced lines in the tables).

Firstly, a single TAO tree (T = 1) already shows very good

accuracy, while naturally being very small in size and in-

ference. A single TAO-l tree beats all other forest meth-

ods for abalone and SARCOS and is comparable to the

best in the other datasets. A single TAO-c tree has consis-

tently lower accuracy than TAO-l, although it is still com-

parable to other methods in some datasets. This demon-

strates two important things. First, and as expected, that

oblique trees with linear-predictor leaves are a better model

than axis-aligned trees (which are ill-suited for correlated,

high-dimensional input features) or than oblique trees with

constant-predictor leaves (which represent a piecewise con-

stant regression function and is ill-suited for continuously-

varying outputs). Second, that our TAO regression algo-

rithm is able to find good optima of such trees.

More importantly, and the main focus of our paper, let us

look at the TAO forests (T > 1). TAO-l forests, followed

by TAO-c forests, have the lowest test error in all datasets,
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often by a considerable margin. The TAO-l error can be

close to half the next best error (of much larger forests)

in the CT slice and SARCOS datasets. Also, the standard

deviation of the error shown in the tables is very small (even

for single trees), which makes the algorithm robust.

In terms of model size, state-of-the-art forest methods are

based on axis-aligned (univariate) trees, where each de-

cision node thresholds a single feature, having constant-

predictor leaves. Therefore, both decision nodes and leaves

are lightweight: 2 parameters for decision nodes (feature

index and threshold) and K for leaves (output vector).

Whereas we use oblique trees in our TAO forests, where

each decision node uses up to D + 1 parameters (hyper-

plane weights and bias), and each leaf uses either K or up

to K(D + 1) parameters (constant output or linear predic-

tor). While TAO trees are potentially much heavier, the for-

est ends up being smaller and faster, for two reasons. First,

each TAO tree is trained with an ℓ1 penalty that (even with

a small hyperparameter α) sparsifies the tree. This hap-

pens in terms of the nonzero weights in both the decision

and linear leaf nodes, and in the number of nodes in the

tree (since some nodes are pruned). The ratio of the num-

ber of parameters between a trained TAO tree and its initial

(dense) tree is quite small, varying from 3% for MNIST,

22% for CT slice, 35% for cpuact and 83% for abalone.

And second, the resulting forests have fewer trees (up to

T = 30 in all datasets) that are shallower (up to ∆ = 5–

10 for TAO-l). This contrasts with RFs or gradient boost-

ing, which use many more trees (often over thousands) that

are much deeper. For example, in the abalone and cpuact

datasets, a 100-tree RF has 1 to 2 orders of magnitude more

parameters than the best-accuracy TAO-l forest.

5.3. High-dimensional Regression: MNIST Digit

Rotation

Most works on regression focus on problems where the out-

put vector is of low dimension, very often 1. We explore a

more challenging, high-dimensional output vector by map-

ping an input MNIST handwritten digit image (of dimen-

sion D = 784= 28× 28 grayscale pixels) to another image

or image patch using a synthetic, severely nonlinear trans-

formation. We do two versions of this. In “full-image ro-

tation” we apply a class-specific image rotation (e.g. 1s are

rotated by 49◦, 2s by -57◦, etc.), so the output is an image

of dimension K = D. In “patch selection and rotation”,

we apply a class-specific image rotation to an image patch

of 8× 8 of class-specific location, so the output is an image

of dimension K = 64. Full details are in the suppl. mat.

Table 3 shows the results of different forest methods for

both tasks, confirming our earlier results even more dras-

tically. A single TAO-l regression tree already beats RFs

and all other methods in test error (and forest size), while

Table 3. Like table 1 but for the MNIST regression tasks: full-

image rotation (top) and patch selection and rotation (bottom).

Forest Etest × 10−2 #pars. FLOPS T ∆

AdaBoost >24 hours runtime 39k 25
CART 23.08±0.12 120k 28 1 28
TAO-c 21.10±0.37 17M 5 108 1 16
RF 14.38±0.23 7.6M (2 830) 100 39

fu
ll

-i
m

ag
e

(6
0
k
,7

8
4
,7

8
4
)

RF 14.08±0.25 68M (28k) 1k 40
ET 13.83±0.12 12M (3 091) 100 35
TAO-c 13.76±0.09 9M 42k 30 29
ET 13.72±0.13 109M (3 360) 1k 38
XGBoost 10.35±0.00 180M (613k) 39k 25
TAO-l 9.63±0.17 288k 4 491 1 7
TAO-l 6.59±0.11 7.7M 126k 30 7

CART 28.51±0.11 119k 49 1 49
TAO-c 21.17±0.02 1.2M 2 501 1 14
RF 17.87±0.04 7.6M (4 669) 100 59
RF 17.18±0.03 71M (42k) 1k 61
ET 16.97±0.01 12M (4 595) 100 57

p
at

ch
(6

0
k
,7

8
4
,6

4
)

XGBoost 16.79±0.00 44M (84k) 3.2k 25
ET 16.69±0.01 114M (41k) 1k 64
AdaBoost 16.65±0.09 109M (80k) 3.2k 25
TAO-c 16.61±0.03 35M 70k 30 14
TAO-l 16.13±0.05 65k 2 674 1 7
TAO-l 9.91±0.03 2M 78k 30 7

input

output

TAO-c
T = 30

RF
T = 1k

ET
T = 1k

XGBoost
T = 39k

TAO-l
T = 1

TAO-l
T = 30

Figure 1. Selected MNIST test images, corresponding ground-

truth output (class-dependent full-image rotation) and predicted

output by different forest algorithms. You may want to zoom in.

a TAO-l forest almost halves this error. Fig. 1 shows some

input images and their ground-truth and predicted outputs,

demonstrating the gain in RMSE is visually obvious too.

TAO trees are also better at discarding features (input pix-

els) that are not useful for the prediction (see suppl. mat.).

It is possible to solve a regression with K output dimen-

sions by concatenating K scalar regression models. This

makes some methods reduce their error, but TAO-l is still

the clear winner (see suppl. mat.).

5.4. Training Time

Table 4 gives representative runtimes for several datasets.

For the larger datasets, TAO is a bit slower than XGBoost

but much faster than AdaBoost. The suppl. mat. gives
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Table 4. Training times in seconds (”) or minutes (’) for several of

the datasets in tables 1–2, assuming T = 30 trees for TAO forests

and T = 1k trees for the other methods. The training times for

cpuact and abalone were very similar to those of ailerons.

ailerons CT slice YearPredictionMSD

RF 1.4” 55” 81’

XGBoost 38” 303” 234’

AdaBoost 79” 1 976” 1 410’

TAO-c 297” 849” 316’

TAO-l 213” 691” 279’

more detailed training times for the MNIST tasks. Roughly

speaking, the time increases as ET, RF (minutes) ≪ XG-

Boost (4 h) . TAO (3–7h) < AdaBoost (> 24h). Note

that, unlike XGBoost, our Python implementation is not

optimized3.

Overall, the runtime of TAO forests is reasonable and more

than justified by the consistently low test error they achieve,

which is sometimes surprisingly much lower (for MNIST

and CT slice, the TAO forests’ error is about half the error

of the closest competitor while using smaller forests).

5.5. Study of Different Diversity Mechanisms

The success of bagging-based forests is due to their ability

to reduce variance by combining weakly correlated trees

(Breiman, 2001; Friedman, 2001; Hastie et al., 2009), so

making the trees dissimilar from each other is important.

Next, we study systematically different mechanisms to di-

versify oblique regression forests trained with our TAO re-

gression algorithm, as well as the forest hyperparameters.

Suppl. mat. shows additional results (other datasets, etc.).

Different training samples One of the most common ap-

proaches of introducing diversity is to learn each tree on a

different subset of the training set. Fig. 2 shows, for the

cpuact dataset, the results of using a bootstrap sample (size

M = N sampled with replacement) and a random sample

of size M < N (where N is the total training set size). In

general, bagging (bootstrap sample) performs well but the

best accuracy occurs if using M ≈ 90% random samples.

Hence, bagging offers a simple, robust option, but some-

what better accuracy is obtained by tuning M . We expect

this to be particularly true in large training sets.

Different initialization Another way of introducing di-

versity is to generate different random initial parameters

(hyperplane weights and bias) for each tree, which will re-

sult in different local optima. Fig. 2, for the cpuact dataset,

3We now have a C implementation which is several times
faster than the Python code used in this paper.
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Figure 2. Diversity mechanism (cpuact dataset): training each of

the T trees on a bootstrapped (dashed horizontal lines) or random

data subset (solid lines, with size given by the X axis as a percent-

age of the total training set). All trees are complete of depth 6 and

their initial parameters are random. The T trees in the forest use

the same initial random tree (top) or each uses a different initial

random tree (bottom).

clearly shows that this produces lower test error than using

the same initialization for all trees.

Feature subsets Another classic diversity mechanism is

to use a random subset of features at each node split (or

at each tree). Random Forests benefit hugely from this; it

is recommended to use m = ⌊D/3⌋ features in regression

RFs, where D is the total number of features (Hastie et al.,

2009, sec. 15.3). However, as table 5 clearly shows for

cpuact, TAO forests achieve best accuracy in both training

and test if using all D features. We suspect that having a

good tree optimization (certainly much better than that of

CART or C4.5) means using all features results in better

individual trees, and this helps the forest more than the di-

versity that random feature subsets introduce.

Table 5. Diversity mechanism (cpuact dataset): training each of

the T trees on a different, random feature subset of size m and

where D is the total number of features. “Local” means each node

picks m features at random, “Global” means each tree picks m
features at random, the same for each node. All trees are complete

of depth 6 and their initial parameters are random.

Size m of T = 10 T = 20
feature subset Etrain Etest Etrain Etest

m = D (all features) 2.18 2.43 2.17 2.41

m = D9/10 2.23 2.50 2.22 2.48

m = D8/10 2.28 2.53 2.26 2.51

L
o
ca

l

m = D7/10 2.43 2.67 2.40 2.62
m = ⌊D/3⌋ 2.56 2.79 2.52 2.68

m = D6/10 2.62 2.84 2.57 2.71

m = D9/10 2.58 2.68 2.41 2.59

m = D8/10 3.24 3.41 2.97 3.03

G
lo

b
al

m = D7/10 4.01 4.11 3.16 3.24
m = ⌊D/3⌋ 5.17 5.29 3.64 3.70

m = D6/10 6.95 7.08 4.57 4.66
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Figure 3. Training error (column 1) and test error (column 2) on

the cpuact dataset for TAO forests as a function of 3 factors: tree

depth ∆, number of TAO iterations I and number of trees T . Each

row fixes one factor and varies the other two.

Forest hyperparameters: tree depth ∆, number of trees

T and number of TAO iterations I Figure 3, for the

cpuact dataset, explores several combinations of these hy-

perparameters. The results are quite sensible: increasing

the model size (∆ or T ) or the optimization amount (I) al-

ways results in lower training error, and in lower test error

until a point where overfitting sets in. Overfitting is partic-

ularly noticeable if I ≥ 80, although this is due to the small

sample size of cpuact. This is also clear evidence that our

TAO regression algorithm is indeed able to do a good op-

timization, and suggests that TAO forests make better use

of the available parameters. RFs or boosting overfit only

if increasing enormously the number of trees (Hastie et al.,

2009, sec. 15.3.4), resulting in huge forests in practice.

Fig. 4 compares TAO, RF and XGBoost as a function of the

number of trees T . It is interesting that RF and XGBoost

have lower training error but higher test error than TAO.

Indeed, for TAO the test error is only somewhat bigger than

the training error, but for RF and XGBoost it is quite bigger,

indicating an imbalance in their learning procedure.

Recommended hyperparameters Based on the previ-

ous study, we suggest the following practical construction

of TAO regression forests. Each tree should always use

all features and initialize parameters randomly; it can be

trained on a bootstrap sample, or (with more effort but bet-

ter accuracy) on a random subset of size M < N . Each

tree should be trained for as many iterations as possible
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Figure 4. Training error (column 1) and test error (column 2) on

the ailerons (row 1) and cpuact datasets (row 2) for TAO forests

(40 iterations, tree depth 7), and XGBoost and Random Forests as

a function of the number of trees T .

but avoiding overfitting. Most importantly, the forest size

should be as big as possible (depth ∆, number of trees T )

but also avoiding overfitting; practically, ∆ and T could be

determined by cross-validation. Also, we use a small ℓ1
sparsity penalty α = 0.01, which helps remove unneces-

sary features, weights and nodes (also reducing overfitting)

while barely hurting the accuracy.

6. Conclusion

We have extended the Tree Alternating Optimization

(TAO) algorithm to handle regression problems and used

it with bootstrap (bagging) or random data samples to pro-

duce regression forests of oblique trees. In terms of ac-

curacy, these forests outperform all competing algorithms

we tested, notably random forests, AdaBoost and gradient

boosting, in a range of datasets. The improvement is par-

ticularly drastic if using trees having linear leaves. In addi-

tion, these TAO forests are smaller in total number of pa-

rameters and in inference time. Their design in terms of hy-

perparameter tuning is as simple as with random forests or

boosting: we simply need to choose a tree depth and num-

ber of trees as large as computationally possible, but with-

out overfitting. Training time is not as lightning-fast as ran-

dom forests but it is comparable to boosting, and the trees

can be trained in parallel. This makes our TAO forests a

model of immediate, widespread practical applicability and

impact, and suggests it could replace random forests as the

state-of-the-art in ensemble learning. We hope our work

will encourage others to verify this in other datasets. Fi-

nally, the effectiveness of TAO as base learner is not limited

to regression or bagging. Elsewhere, we report consistent

improvements in accuracy with smaller forests in classifi-

cation (Carreira-Perpiñán & Zharmagambetov, 2020) and

with boosting (work under submission).
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