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ABSTRACT

We propose a new type of ensemble method that is specially de-

signed for neural nets, and which produces surprising improvements

in accuracy at a very small cost, without requiring to train a new neu-

ral net. The idea is to concatenate the output activations of internal

layers of the neural net into an “ensemble feature vector”, and train

on this a decision tree to predict the class labels while also doing fea-

ture selection. For this to succeed we rely on a recently proposed al-

gorithm to train decision trees - Tree Alternating Optimization. This

simple procedure consistently improves over simply ensembling the

nets in the traditional way, achieving relative error decreases of well

over 10% of the original nets on the well known image classification

benchmarks. As a subproduct, we also can obtain an architecture

consisting of a neural net feature extraction followed by a tree clas-

sifier that is faster and more compact than the original net.

Index Terms— image classification, ensemble learning, deci-

sion trees, neural networks, feature extraction

1. INTRODUCTION

Deep learning has become highly successful in recent years, in ma-

chine learning applications involving complex inputs such as im-

ages, audio or text. One reason why this particular type of model

works so well is its ability to compute features (activations of neu-

rons in internal layers) that capture important properties of the input

(e.g. image), which enable an accurate classification in difficult tasks

involving many classes and enormous intra-class variability. These

features can also be invariant to certain transformations of the in-

put, such as translation, rotation or intensity changes of an image.

As a result, we have now a proliferation of deep net architectures of

ever increasing complexity, containing millions of parameters, that

continue to improve the state-of-the-art in various tasks. Often these

architectures define a “family” of nets of different sizes and corre-

spondingly higher accuracy, such as LeNet [1], VGG [2], ResNet

[3], DenseNet [4] and many others. At the same time, the cost of

training such models (in computing time, memory size, energy con-

sumption and human expertise required, among other factors) has

escalated dramatically, and indeed has motivated much interest in

compressing deep nets, from both a research and a practical point of

view. In order to achieve state-of-the-art classification in the hard-

est benchmarks, these nets are trained on large datasets over days

of processing in GPU clusters (not including the considerable effort

and time dedicated to tune hyperparameters by an expert). This also

leads to diminishing returns, as shown in table 1: large increases in

size within a family quickly translate into tiny reductions in error.

A different, proven way to construct accurate classifiers is via

ensemble learning. In this paper, we propose a new type of ensemble

method that is specially designed for neural nets and capitalizes on

existing, trained neural nets—a large number of which can be found

and online. The idea is to concatenate the output activations of in-

ternal layers of the neural net into an ensemble feature vector, and

train on this a classification tree to predict the class labels. Although

using a tree is not strictly necessary, the sparse oblique trees (trained

with the recently proposed Tree Alternating Optimization (TAO) al-

gorithm [5, 6]) have some unique advantages: they produce trees

and forests with high accuracy [7, 8, 9, 10, 11]; they are very fast

(at training and inference); and they do feature selection [12]. This

is important because the ensemble feature vector can be quite high-

dimensional and we expect some features to be redundant. More-

over, preliminary works on combining neural nets and DTs showed

promising results [13]. Our simple procedure turns out not to im-

prove significantly if one ensembles features at different layers of

the same net. But it works surprisingly and consistently well if we

ensemble features from different neural nets, achieving relative er-

ror decreases of well over 10% of the best original net’s error. The

resulting model strikes a good balance between number of parame-

ters and classification error, improving over the diminishing returns

exhibited by existing deep net families.

1.1. Related work

A main focus of research in neural nets, particularly in recent years,

has been the development of different architectures, which seek to

improve classification accuracy in the first place, but also ease of

optimization, and other factors. Convolutional nets [1] are a partic-

ularly successful architecture, with feedforward layers constructing

progressively more elaborate features of the input. In this context,

the idea of feeding intermediate unit activations directly to a classi-

fier layer and training them end-to-end is not new [14, 15]. More

recent architectures exploit this idea in various forms (e.g. skip con-

nections): Inception [16], ResNets [3], DenseNet [4], etc. However,

in all these works, connecting intermediate neurons directly to a clas-

sifier layer is only one part of the definition of the overall neural

net architecture, which is a more complex problem requiring careful

model selection and training. Here we exploit the potential of taking

internal activations from multiple, trained nets, and feeding them to

a fast, accurate tree classifier, which is the only part we train.

In ensemble learning, one seeks to train several classifiers and

combine them to produce the final classification [17, 18]. Ensembles

often show marked improvements over a single classifier, particu-

larly when the ensemble members are diverse. Classic techniques

to achieve diversity include training each classifier on a different

subset of the training set or having each classifier be of a differ-

ent type. Classic approaches to combine the classifiers’ outputs are

voting (e.g. majority or average), boosting, and stacked generaliza-

tion (SG) [19]. The latter is the most closely related to our work,

with a fundamental difference being that in SG one feeds directly



Table 1. Diminishing returns in test classification error (%) vs model size (millions of parameters) in several deep net families: ResNets [3]

and VGGs [2] of different numbers of layers on CIFAR-10, and DenseNets [4] of different numbers of layers and blocks on CIFAR-100.

ResNet size error VGG size error DenseNet-BC size error
20 0.27M 8.75% 11 9.23M 8.01% 100,12 0.80M 22.27%
32 0.46M 7.51% 13 9.41M 6.48% 94,12 0.97M 22.16%
56 0.85M 6.97% 16 14.72M 6.41% 100,14 1.08M 22.01%

110 1.70M 6.43% 19 20.03M 6.35% 250,24 15.30M 17.60%
1202 19.40M 7.93% 190,40 25.60M 17.18%

the class outputs (e.g. softmax values, posterior probabilities) to the

combiner, while we feed internal activations of the neural net, which

are generally not directly related to class scores. A further differ-

ence is that SG argues for using a validation set (different from the

training set used for the learners) whereas our trees are trained on

the same training set.

There is also work on training an ensemble of trees on the fea-

tures produced by a single deep net. Training a forest on the pixel

values [20] produces a far lower accuracy than a deep net, but train-

ing a forest on the features of a deep net [21] can sometimes (though

not always) improve a bit over the deep net accuracy. Some re-

cent works have used features from multiple layers or multiple deep

nets to improve classification in the context of a specific application

[22, 23, 24]. These works are motivated by sensor fusion in a spe-

cific application and use any features available to them in an ad-hoc

way. In our work, we study systematically the idea on ensembling

deep net features (within- and across nets, and fed to a sparse oblique

decision tree) as a generic technique for quick construction of high-

accuracy classifiers based on pretrained nets widely available online.

2. THE TAO ALGORITHM

Using the Tree Alternating Optimization (TAO) algorithm is nec-

essary for the success of our approach, because the ensembled fea-

tures define a high-dimensional vector and we seek a highly accurate

sparse decision tree classifier to take advantage of it. This is not pos-

sible with traditional trees trained using algorithms such as CART

[25] or C4.5 [26]: they have no guarantees concerning the optimiza-

tion of the desired loss, and the trees are typically axis-aligned (deci-

sion node uses a single feature). The sparse oblique trees proposed

in [5, 6] are trees having linear, multivariate decision nodes but each

involving a small number of features, obtained by minimizing an ℓ1-

regularized classification error. Each iteration of TAO is guaranteed

to decrease or leave unchanged this objective. Each decision node

of the tree uses hard splits, so that an input instance follows a single

root-leaf path. This makes the tree inference very fast, unlike with

soft decision trees [27], where an instance follows every path and

assigns every leaf a certain probability.

We give a very brief description of TAO (see further details in

[5]). TAO assumes a given tree structure with initial parameter val-

ues, and minimizes the following objective function jointly over the

parameters Θ = {θi} of all nodes i of the tree:

E(Θ) =
∑

N

n=1
L(yn, T (xn;Θ)) + λ

∑
nodes i

‖wi‖1 (1)

where {(xn, yn)}
N

n=1 ⊂ R
D × {1, . . . ,K} is a training set of D-

dimensional real-valued instances and their labels (in K classes),

L(·, ·) is the 0/1 loss, and T (x;Θ): RD → {1, . . . ,K} is the pre-

dictive function of the tree. The parameters θi at a node i are a label

if i is a leaf1 or a hyperplane with weight vector wi ∈ R
D and bias

1We extend TAO to learn a softmax classifier at each leaf by using the
cross-entropy instead of the 0/1 loss in eq. (1).

bi ∈ R if i is a decision node, which thus sends an input instance x

down its right child if wT

i x ≥ bi and down its left child otherwise.

We take as initial tree a deep enough, complete binary tree with

random parameters. In order to train such trees, TAO relies on two

theorems. First, a separability condition which states that E(Θ) in

eq. (1) separates over nodes that are not descendants of each other

(e.g. all nodes at the same depth). Second, the problem of opti-

mizing eq. (1) over a node is equivalent to a much simpler “re-

duced problem”. This consists of optimizing a linear binary clas-

sifier over {wi, bi} on the training instances {(xn, yn)} that cur-

rently reach node i. Each such instance xn is assigned a pseudola-

bel y
n
∈ {left, right} which indicates the child whose subtree

gives the better prediction for xn. Hence, TAO repeatedly trains an

ℓ1-regularized binary classifier at the decision nodes and a K-class

classifier at the leaves (cycling over all nodes depthwise).

3. DEEP NET FEATURE ENSEMBLING WITH A SPARSE

OBLIQUE TREE CLASSIFIER

Our proposed procedure is as follows. Assume we have a dataset

of input instances and their labels (in K classes); and several deep

nets trained, somehow, on that dataset. Each deep net has a number

of layers, each layer has a number of units (neurons), and each unit

computes one feature. This includes the input layer (pixel values,

for an image) and the output layer (softmax outputs). Then we first

construct an ensemble feature vector by picking a subset of features

from each net and concatenating them; and then we train a sparse

oblique tree classifier with TAO on a dataset where the inputs are

the ensemble feature vectors and the output is their ground-truth la-

bel. This procedure is generic and admits multiple variations. Some

important ones are:

Features We may have just one deep net and ensemble features

from its internal layers (called within net in our experiments); or

multiple nets of different types and pick features from a different

layer in each (we call this across nets).

Deep net training We may train the individual nets ourselves (us-

ing standard ensemble learning techniques to generate diversity, such

as training each net on a different sample). But practically it may

be better to take existing deep nets that may have been trained in

(partially) unknown ways. The latter may seem risky but it is much

simpler, it introduces diversity, and the tree can select which features

to use anyway (by selecting the sparsity hyperparameter λ).

Tree training We train a tree using TAO algorithm as it was men-

tioned above. We tune the sparsity hyperparameter λ to achieve

a desirable trade-off between validation error and sparsity in the

tree. Usually, one will want to pick the sparsest tree whose valida-

tion error is reasonably close to minimum validation error (see [28,

fig. 7.9]).

Our experiments explore several of these variations. We also com-

pare with standard neural net ensembles and stacked generalization.
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Fig. 1. Ensembling features within the same net: ResNet56 (left) and VGG16 (right) on CIFAR-10. In each panel, we show the test error and

histogram of features selected per layer.
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Fig. 2. Ensembling features across different nets (top: CIFAR-10, bottom: CIFAR-100). The horizontal dashed lines and vertical arrows

indicate the improvement of a feature ensemble over the best member of the ensemble (also given as relative error in percentage inside each

bar).

4. EXPERIMENTS

We consider three families of deep nets: VGG [2], ResNet [3] and

DenseNet [4], each with several sizes (number of layers for VGG and

ResNet, number of layers and blocks for DenseNet). For CIFAR-10

we train nets ourselves; for CIFAR-100 we use available trained nets

from the web2.

TAO uses an ℓ1-regularized logistic regression to solve the de-

cision node optimization (using LIBLINEAR [29]). The complexity

of one TAO iteration (pass over all nodes) isO(∆C) where ∆ is the

tree depth (for a complete tree) and C the cost of one ℓ1-regularized

logistic regression on the entire training set. Training a tree for the

largest experiments took at most 18 minutes, with a final depth of

the resulting, pruned tree of 2 to 3 typically. The inference time and

memory size are dominated by the computation of the deep net(s)

features; the tree accounts for just 0.1% and 1.3% of the time and

memory.

Summary. Our experiments show the following: within-net fea-

ture ensembling does not noticeably improve accuracy, but across-

net (same or different architectures) improves it considerably. In the

2https://github.com/bearpaw/pytorch-classification

latter case, our feature ensembling consistently improves over the

standard neural net ensembling.

4.1. Within net

Modern deep nets can have many layers and a huge number of neu-

rons, hence potential features to ensemble in a vector. We cannot

carry out a comprehensive evaluation of all possible combinations,

so we provide results in a subset of what we thought might be in-

teresting combinations instead. Firstly, we include entire layers at

once or not at all. Second, we do not use the very last layer (softmax

outputs) because it can always be computed by the tree (by a soft-

max classifier at each leaf). Third, we report a subset of cumulative

ensembles containing the features from layer i to the penultimate

layer (before the softmax outputs), which we notate as “−i:−1”

(so “−2:−1” contains the features from the last two layers). Fig. 1

shows our results for ResNet56 and VGG16 on CIFAR-10.

On both deep nets, which have rather different architectures,

we clearly observe that, as we add intermediate features to the

penultimate-layer features, the training error decreases monoton-

ically but very little, and the test error decreases very little then

increases slightly (likely because the tree is overfitting). Inspecting



the features used in the tree (histogram plot) shows that indeed most

features come from the penultimate layer. Adding the raw pixel

inputs did not help either. Training a separate tree on each layer’s

features and ensembling the trees by voting (results not shown)

achieves very similar results. This is a negative result, but interest-

ing regarding the behavior of a deep net: it suggests that the features

in the penultimate layer are sufficient for optimal classification, and

that the features in previous layers are correlated or redundant with

them (although still necessary to construct them).

4.2. Across nets

Fig. 2 shows our results for ResNet, VGG and DenseNet (of differ-

ent sizes) on CIFAR-10 and CIFAR-100. Based on the results of

the within-net experiments, for each net we use only the features in

the penultimate layer (before the softmax outputs). We notate each

deep net by an id and each combination by the ids making it up. For

CIFAR-10: v1, v2, v3 stand for VGG11 / 13 / 16; and r1, r2, r3 for

ResNet20 / 56 / 110, respectively. For CIFAR-100: v4, v5, v6 stand

for VGG19 / 16 / 13; r4, r5, r6 for ResNet56 / 80 / 110; and d1,

d2, d3 for DenseNet-BC-100(k=12) / 94(k=14) / 100(k=14), respec-

tively. Therefore v3r2r3 means concatenating features from VGG16,

ResNet56 and ResNet110 on CIFAR-10.

We clearly see that any combination improves over all its mem-

bers. The improvement is particularly remarkable if we bear in mind

the diminishing returns of table 1; It is also remarkable in that we

achieve large gains with few members (2 to 4) in the ensemble: the

relative improvement of the combination over the best member net is

between 5% and 15%. This holds when combining nets of different

size, architecture, or both. The more members (of different type),

the lower the error (with eventually diminishing returns); but other

than that there does not seem to be a clear pattern of what combi-

nation is better. Presumably the features from the different nets are

less correlated so their concatenation can benefit.

4.3. Comparison with baselines

An even simpler and well-known way to combine multiple existing

nets is by neural net ensembling, where, given the softmax outputs

for each class of each net, we either pick the label by majority vote

(assuming an odd number of members) or sum the softmax outputs

and pick the label with largest sum. Our results in table 2 (simi-

lar results were obtained for ResNets) show that this does improve

over the individual members as well, but not as much as our ap-

proach, which reduces the error of neural net ensembling by up to

5.3%. While our approach has an extra overhead (learning the tree),

this is minor at training time and negligible at inference time. We

also compared our approach against traditional stacked generaliza-

tion (see NN stacking in table 2). We ensembled the softmax outputs

of the neural nets (not the deeper features) into a super-feature vector

which we fed to a logistic regression. This approach improves over

the individual neural nets as well, but less than our method, which

beats it by up to 4%.

Finally, we also compare with more advanced baselines in ta-

ble 3. Namely, [30] employs a neural net architecture with several

parallel branches and the output of all branches are averaged to pro-

duce the final result. In SGDR-WRN [31], authors suggest to take

snapshots of several SGD restarts and ensemble them. These meth-

ods train ensemble of NNs in end-to-end manner, whereas our ap-

proach builds ensemble based only on features. But it is remarkable

that our simple approach outperforms the mentioned works. For all

methods, we compare results of neural nets of the similar sizes (# of

parameters) and report test error.

Table 2. Comparison of TAO trees with traditional neural net en-

sembling and stacked generalization for VGGs on CIFAR-10. The

ensemble of neural nets is done using majority vote (“NN ensemble

(m.v.)”) or computing the average (per class) of the softmax outputs

and picking the largest (“NN ensemble (a.s.)”). “NN stacking” uses

logistic regression trained on concatenated outputs of the neural net.

Method Etrain (%) Etest (%)
v1 0.0 8.01
v2 0.0 6.48
v3 0.0 6.41
v1v2 - TAO tree 0.0 5.98
v1v2 - NN ensemble (a.s.) 0.0 6.23
v1v2 - NN ensemble (m.v.) - -
v1v2 - NN stacking 0.0 6.11
v1v3 - TAO tree 0.0 5.95
v1v3 - NN ensemble (a.s.) 0.0 6.13
v1v3 - NN ensemble (m.v.) - -
v1v3 - NN stacking 0.0 6.16
v2v3 - TAO tree 0.0 5.63
v2v3 - NN ensemble (a.s.) 0.0 5.73
v2v3 - NN ensemble (m.v.) - -
v2v3 - NN stacking 0.0 5.70
v1v2v3 - TAO tree 0 5.60
v1v2v3 - NN ensemble (m.v.) 0.0 5.9
v1v2v3 - NN ensemble (a.s.) 0.0 5.65
v1v2v3 - NN stacking 0.0 5.68

Table 3. Comparison of our approach with some baselines on neural

net ensembling and single DenseNet on CIFAR-100. “*” indicates

that the result is taken from [30].

Method Etest (%) # params
DenseNet-BC(100,14) 22.01 1.1M
SGDR-WRN* 20.90 2.4M
Coupled NN* 19.95 2.3M
TAO(d1d2d3) 19.07 2.8M

5. CONCLUSION

We have proposed a new form of ensembles specifically tailored for

deep nets, based on the hypothesis that internal features rather than

class scores contain information that helps classification, and that

this can be captured by a sparse oblique tree. While this barely

improves within a single net, it significantly and consistently im-

proves if ensembling features across different nets. The decision

tree, trained with the TAO algorithm, allows us to handle efficiently

and accurately the resulting high-dimensional feature vector. In-

specting the tree confirms that features in early layers of the net do

not help improve classification.

This provides a simple, fast and practical way to construct state-

of-the-art classifiers, by downloading existing deep nets and training

the tree (in a few minutes’ runtime). Its accuracy consistently beats

ensembling the nets via voting. Our results are remarkably robust

across a range of deep nets which were trained for the image classifi-

cation task. Finally, our ideas suggest future work in jointly training

the entire architecture, using a forest classifier (rather than a tree),

and in neural net compression.
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[9] Miguel Á. Carreira-Perpiñán and Arman Zharmagambetov,

“Ensembles of bagged TAO trees consistently improve over

random forests, AdaBoost and gradient boosting,” in

FODS’20, Seattle, WA, Oct. 19–20 2020, pp. 35–46.

[10] Arman Zharmagambetov, Magzhan Gabidolla, and Miguel Á.
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