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ABSTRACT

Acoustic events have a hierarchical structure analogous to
a tree (or a directed acyclic graph). In this work, we pro-
pose a structure-aware semi-supervised learning framework
for acoustic event classification (AEC). Our hypothesis is that
the audio label structure contains useful information that is
not available in audios and plain tags. We show that by or-
ganizing audio representations with a human-curated tree on-
tology, we can improve the quality of the learned audio rep-
resentations for downstream AEC tasks. We use consistency
training to use large amounts of unlabeled data for structured
representation manifold learning. Experimental results indi-
cate that our framework learns high quality representations
which enable us to achieve comparable performance in dis-
criminative tasks as fully supervised baselines. Moreover, our
framework can better handle audios with unseen tags by con-
fidently assigning a super-category (internal node like “ani-
mal” in Fig. 1) tag to the audio.

Index Terms— Acoustic event classification, Represen-
tation learning, Audio ontology, Decision tree

1. INTRODUCTION

Acoustic Event Classification (AEC) focuses on detecting if
certain events exist in a short sound snippet. It is relevant
to many applications including home security [1] and smart
homes [2] and is becoming increasingly more important with
the expansion of virtual assistant technologies such as Ama-
zon Alexa, Google Assistant, Apple Siri, and etc. State-of-
the-art AEC models are based on deep neural architectures
trained with large amounts of labeled data [3]. Such a model
development paradigm is not ideal because it is difficult and
expensive to collect an audio corpus for AEC with high di-
versities in event granularity and acoustic environment. Ad-
ditionally, it is unfriendly to new acoustic event discovery or
feature expansion.

Recent advances in self-supervised learning for speech
and audio processing [4, 5, 6, 7] have been proven useful in
the settings with limited annotated data. In particular, repre-
sentation networks pre-trained on a large amount of unlabeled
data can learn general representations that can be used by a
wide range of downstream tasks. Task-specific supervised
fine-tuning based on the pre-trained representation networks
can typically achieve similar levels of performance with
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Fig. 1. Example of the tree-structured ontology of various au-
dio events. Hierarchical structure allows one to group similar
audio events under the same “super-category” (i.e. “animal”).

much fewer labeled data. Besides these works which learn
a sequence of representations for audios, there is another
line of research which focus on learning per-instance fixed-
dimensional representations that can benefit downstream
tagging tasks [8, 9, 10].

All of the aforementioned self-supervised learning ap-
proaches ignore the domain knowledge, which contains rich
information that can be used to improve model performance.
Motivated by this, we capitalize on the idea of using a tree-
structured ontology to guide the training of the representation
network, as there exist numerous human-curated ontologies
(e.g. [11]) for acoustic event classification. Tree-based ontol-
ogy has a special hierarchical structure that merges similar
audio events under the same subtree (see Fig. 1) while keep-
ing dissimilar sounds distant in the hierarchy. Encouraging
the audio representation manifold to align with a label ontol-
ogy is beneficial for organizing the audio representations in
a more reasonable fashion. For example, as shown in Fig. 1,
the label ontology does not only assist in distinguishing be-
tween leaf nodes like “cow” and “cat”, it also ensures that
“cow” and “cat” fall into a loose super-category that is “far
away” from “human” and “vehicle” sounds. We expect such
hierarchically organized audio embedding spaces can further
benefit the performance of downstream tagging tasks, and
enhance the generalization to novel or rare events as well.

In this paper, we develop a 2-module joint model con-
sisting of a representation neural network and a decision tree
based on a pre-defined tree-structured ontology. We train
the model using a large set of unlabeled data and a limited
amount of labeled data. We utilize the large amount of unla-
beled data by data augmentation and consistency training [12]
. More specifically, we encourage the different augmented
views of the same audio to predict the same root-to-leaf path
on the ontology tree. We show that tree-based modeling not



Fig. 2. Representation network (CNN-LSTM, CRNN for short, see Section 4.1 for details) takes log mel-filterbank energy
(LFBE) x as input and produces an embedding vector z (average of the LSTM outputs). Decision tree operates on embedding
space and has its own learnable parameters at each node. The entire representation architecture is trained end-to-end. When
training the one-layer RNN AEC recognizer on top of the CRNN, we detach the pooling layer and freeze the CRNN encoder.

only significantly improves the model performance on events
seen during the training stage, but also helps the learned rep-
resentations generalize to super-categories that are semanti-
cally correct. Such a capability is beneficial for discovering
novel sound types while maintaining good performance on
seen events.

2. RELATED WORKS

Using label structure to improve the model performance
is widely used in many domains, including unsupervised
speech recognition [13, 14] and semantic segmentation [15].
Specific to the AEC domain, [16] shows that textual em-
bedding contains rich structure information that can be used
to do zero-shot learning for AEC. Label-aware AEC also
draws attention recently in fully-supervised scenarios. For
instance, [17] uses a 2-level ontology of audio classes for
AEC and [18] uses graph convolutional networks to learn
label embeddings. Different from the aforementioned works,
our work combines semi-supervised representation learning
and tree-based modeling. Our motivation is to better organize
the audio representations by leveraging human knowledge,
which is under-exploited. We find that the consistency train-
ing significantly solves the lack-of-data problem of AEC.
More importantly, the method we propose shows potential in
discovering novel acoustic events.

3. TREE-STRUCTURED ONTOLOGY FOR
REPRESENTATION LEARNING

The model architecture we propose is presented in Fig.2. We
first extract spectrogram features (input x) and pass them to a
representation network (encoder). The encoder we used is a
shallow CNN-LSTM (CRNN for short) model which features
one LSTM layer on top of a CNN module. We do not exper-
iment with other model architectures in this paper as it is not
the focus of this work. The transformation of the encoder is

denoted as z = f(x; Θ) where Θ represents the encoder (e.g.
CRNN) parameters, and z ∈ R128. The representation vec-
tor z is the input to the tree module. For each internal node
i we define a gating function gi(·) in Eq. 1 with parameters
Wi ∈ R128×Ci and bi ∈ RCi , where Ci ≥ 2 is the number
of children of node i.

gi(z;Wi,bi) = σ(WT
i z + bi) (1)

The above softmax gating function outputs probability distri-
bution over the children nodes of i. In our implementation, a
probability distribution that traverses from root to a leaf node
simply factorizes as:

P (y|z) = gc0,c1
(z) · gc1,c2

(z) . . . gcl−1,cl
(z) (2)

where C = {c0 = root, c1, c2, . . . , cl = y} is the set of
nodes along the root-to-leaf path, and gci−1,ci

indicates the
probability of transition from node ci−1 to its child ci. We
denote W = {Wi,bi}Ki=1, where K is the number of non-
leaf nodes. Note that the described implementation can also
handle directed acyclic graphs if we enumerate all the root-to-
leaf paths. As an initial exploration, we simplify our setting
to tree structure and only handle one root-to-leaf path.

The tree ontology we use (see Fig. 1 for illustration, and
Section 4.1 for setup) originates from [11], and it covers all
of the events (leaf nodes) that appear in the training data. Our
tree-based training does not only encourage z to be classified
as a concrete event (e.g “dog barking”), but also organizes z
in a hierarchical fashion so it can also be semantically closer
to other “animal” sounds.

3.1. Tree-based optimization

Given a training set (X,Y ) = {(xn, yn)}Nn=1 consisting of
input x and the corresponding list of ground truth labels y,
we minimize the negative log-likelihood loss shown below:

Ls(W,Θ) = − E
x,y

∑|y|
j=1 logP (yj |f(x))

|y|
(3)



where yj indicates the jth label of the sample x if it has mul-
tiple labels. Here, one label corresponds to one leaf node in
the pre-defined tree ontology. We implement a stochastic ap-
proximation to Eq. 3, where we randomly select one of the
ground truth labels of sample x, and treat x as single-event
audio during each update.

Please note that, given the pre-defined ontology, our tree-
based modeling is significantly simplified compared to Soft
Decision Trees (SDT) or related methods that combine trees
and neural networks [19, 20]. For example, vanilla SDT train-
ing involves weighted averaging over all leaves, whereas here
we maximize the probability of the correct root-to-leaf path
only. However, we refer to our tree-based optimization as
SDT in this paper for simplicity.

3.2. Consistency training for unlabeled data

Eq. 3 is not directly applicable for unlabeled data. In order
to use unlabeled data, we apply consistency training [12],
one semi-supervised learning technique. Recent works have
shown that data augmentation plays a critical role in semi-
supervised learning [21]. We use common augmentation
methods, such as SpecAugment [22], to apply transforma-
tions on the LFBE surface feature. In a nutshell, assuming
we are given a portion of data indexed in set {xm}Mm=1, the
unsupervised consistency loss is defined as:

Lc(W,Θ) = E
x

{
E

c∈C

{
D(gc(z), gc(ẑ))

}}
(4)

where C = {c0 = root, c1, c2, . . . , cl} is the set of inter-
nal nodes along the most likely root-to-leaf path of the non-
corrupted sample x (see more context from Eq.2 and Eq.1).
z and ẑ are the representations of x and x̂ respectively. We
use cross-entropy in our implementation, but D can be other
losses like KL divergence.

For input perturbations (e.g. x̂), we use four types of aug-
mentation that are applied sequentially: 1) adding Gaussian
noise (max standard deviation = 0.05), 2) audio time shift, 3)
frequency mask (with max frequency=10 applied at random
location) and 4) time mask (two masks with time frame=50
applied at random locations). The final loss is given by com-
bining Eq. 3 and Eq. 4 with a weighting hyper-parameter λ:

L(W,Θ) = Ls(W,Θ) + λLc(W,Θ) (5)

Here, Lc considers both labeled and unlabeled data, whereas
Ls applies to labeled data only. We use λ = 1 in all our
experiments and we denote this modified version of SDT as
SDTC.

4. EXPERIMENTS

4.1. Data and setup

We use AudioSet [11] which has its own human-curated on-
tology for our experiments. AudioSet contains 5.8k hours of
audios from 527 sound classes. We only select audio events
with annotation accuracy more than 80% to ensure label qual-
ity. Moreover, to simplify the ontology into the tree structure,
we remove the nodes with several parents. These operations

Table 1. Comparison of different methods on a downstream
classification task (on a subset of AudioSet) given fixed rep-
resentations. F1 score is the average of 5 runs.

Label fraction
Method 1% 5% 10%

Test F1 macro

supervised ——– 0.612 ——–
supervised (with aug.) ——– 0.638 ——–

LFBE 0.201 0.442 0.508
SimCLR+APC 0.244 0.491 0.551
SimCLR+APC → Fine-tune 0.329 0.540 0.587
SDT 0.288 0.531 0.580
SDT + consistency (SDTC) 0.410 0.557 0.600
SDTC + APC (SDTCA) 0.417 0.561 0.609

lead to 127 “leaf events” and 79 “super-categories” (internal
nodes) after filtering (206 events in total). We further divide
the leaf events into 110 “seen” events and keep the remain-
ing 17 as “unseen” events (i.e. events will only be used in
evaluation, see section 4.3). Overall, we have 444, 752 au-
dio clips belonging to “seen events” with the following parti-
tion: 70% for train, 15% for dev and 15% for test. We man-
ually pick the following events as unseen: “Purr”, “Cluck”,
“Conversation”, “Narration, monologue”, “Baby cry, infant
cry”, “Child singing”, “Pant”, “Strum”, “Hammond organ”,
“Double bass”, “Tabla”, “Clarinet”, “Stream”, “Skidding”,
“Subway, metro, underground”, “Buzzer” and “Cash regis-
ter“. The remaining 110 “seen” classes can be obtained after
the pre-processing steps described above.

We extract the log mel-filterbank energy (LFBE) features
for each 10-seconds audio clip (sample rate = 16k): we use
a window size of 25 ms, a hop size of 10 ms, and the number
of mel coefficients is 64. This effectively gives us audio fea-
tures of dimensions 998 × 64. We do not apply global mean
and variance normalization. As for the encoder architecture,
we use the same CRNN-based network for all methods in this
paper. The architecture consists of a 3-layer 2D CNN with
number of filters 24,48 and 96, respectively. Each CNN ker-
nel is followed by ReLU, Max Pooling (except the last CNN
layer) and Batch Norm. The 2D kernel and stride are designed
such that the CNN module outputs 30×96×2 features which
is further reshaped to 30 × 192, and then fed to LSTM layer
of hidden size 128. The LSTM output (30 × 128) is used for
RNN classifier training, and the average of the LSTM output
is the audio representation used as the input to the tree mod-
ule. For all representation learning approaches described in
the next sections, we apply the following optimization con-
figurations: we use Adam optimizer with initial learning rate
0.001, norm gradient clipping 1.0 and batch size 256 (1024
for contrastive learning). We train all models for 10 epochs
and use the model at the epoch with the lowest validation loss
for downstream tasks.

4.2. Main Results: Audio Event Classification (AEC)

We compare CRNN encoders pre-trained by different meth-
ods on AEC. We pick a subset of 20 classes from seen events
and train a single layer LSTM classifier on top of the pre-



trained CRNN encoder. When training all the classifiers
(except fully supervised baselines using 100% of the training
data) in Table 1, we freeze the CRNN encoder. We leverage
only a small subset of labeled data (e.g. 1%, 5% and 10%)
to train the classifier. The remaining 90% of the data serve
as unlabeled data during the representation learning phase.
We compare our SDT representation learning method with
“APC” [4] and “SimCLR [8]”. To make a fair comparison, all
encoders use the same shallow CRNN. APC adopts language
model style pre-training where future frames are generated
based on past frames. We adapt APC a bit such that the
summary of each convolutional window is used to predict
all the frames that will appear in the next convolutional win-
dow. The choices of the CRNN architecture and the adapted
APC loss are based on the consideration that that models
with smaller footprint are more friendly to modern edge de-
vices. SimCLR is another self-supervised baseline where the
main idea is to maximize the similarity between representa-
tions obtained from the same image. Our ablation study (not
shown in the table due to space limit) shows that combining
SimCLR and APC losses with weighting factor β = 0.6, i.e.
β·SimCLR+(1 − β)·APC, yields better performance than
both SimCLR and APC, so we only show “SimCLR+APC”
in the table.

Table 1 shows the dependency of the F1 macro score on
the test set with respect to the percentage of the labeled data
used for training. One thing to notice is that all representa-
tions learned using the 90% remaining data out-perform sim-
ple LFBE features. The fully supervised baseline achieves
the best performance, which is consistent with our expecta-
tion as it can be considered as a “theoretical” upper bound.
Another interesting aspect is that SDT actually learns more
discriminative representations than “SimCLR+APC” or the
plain LFBE classifier. This strongly suggests that the hier-
archical structure information hidden in the tree ontology is
beneficial for AEC tasks. Note that, if the classifier is trained
with α% of labeled data, the SDT (and also the “Fine-tune”
based on 128D vector for SimCLR+APC) is also trained us-
ing this α% of data. The benefit of SDT over SimCLR+APC
diminishes if the encoder of SimCLR+APC is also fine-tuned
(without using tree ontology).

Finally, by using consistency training, SDT training can
also utilize the remaining 90% of the unlabeled data in a
weakly supervised fashion by matching the predicted paths
of different augmented copies. We can see the clear benefit
of SDTC over all other methods in Table 1. Interestingly,
we even observe that SDTC approaches the fully supervised
baseline (without data augmentation). We further add APC
loss to Eq. 5 (SDTCA in the table) as APC loss learns tem-
poral patterns that could be missed by SDT and consistency
losses. Keep in mind that the APC is only used as a multitask
loss rather than for pre-training purposes here. We observe
minor benefits by adding this loss.

4.3. Accuracy at the level of super-categories
Finally, we evaluate the representation quality of SDTCA
(trained using 10% labeled data) at the level of super-
categories using the 128D representations. To elaborate
more, assuming that we have an audio clip of “dog barking”,
then, by using the tree ontology, we can infer the ances-

Table 2. Avg accuracy by levels where “Level 1” checks if
a leaf node is correctly classified, parent and grandparent for
“Level 2” and “Level 3”. Note that, the setting is different
from Table 1 as we use representation vector z to make pre-
dictions.

Seen Unseen
Avg. acc. SDT Baseline SDT Baseline

Level 1 0.46 0.35 - -
Level 2 0.61 0.44 0.59 0.41
Level 3 0.79 0.62 0.78 0.57

tors of this clip: “dog” → “domestic animal” → “animal”.
Following the same logic, we can determine if this clip is
correctly classified as dog, domestic animal, etc. This is
especially important for unseen events (see definition in sec-
tion 4.1) since they do not appear as leaves in the ontology
thus softmax functions do not consider these events during
training. For comparison, we use the prediction provided by
“SimCLR+APC→ Fine-tune”. A fine-tuned model uses the
softmax output to make a prediction on the known label dic-
tionary, and we can match that prediction with our ontology
to find all ancestors.

Table 2 summarizes our results. We measure the accuracy
as follows: following the example of “dog barking”, we col-
lect all audio clips which belong to this event. We measure
how many of them are correctly classified as “dog” (Level 1),
as “domestic animal”(Level 2), etc. We measure the perfor-
mance on both seen (same 20 events used in Section 4.2) and
unseen events. According to the results, our method signifi-
cantly outperforms the baseline in Level 1, and does a better
job in identifying the super-categories. This illustrates that the
trained embeddings respect the structure we learned from on-
tologies. We also find that, SDTCA yields a larger improve-
ment than non-SDT approaches on Level 2 and 3 for unseen
events, compared to the seen event scenario, which supports
the claim that our proposed method has the potential to benefit
novel event discovery.

5. CONCLUSION

We leverage a tree-structured ontology of audio events for
representation learning for acoustic event classification. Since
it is not trivial to embed such information into the learning
pipeline, we propose a parametric tree model which can be
jointly trained with a representation encoder. Moreover, we
apply a semi-supervised learning scheme based on consis-
tency training that can be used to handle label scarcity. To
the best of our knowledge, this is the first attempt to use con-
sistency training for tree-based models in the AEC domain.
Experimental results suggest that SDT-based semi-superivsed
learning can convey the structural information hidden in the
label ontology to learned audio embeddings, and thus fur-
ther improve AEC performance. Also, such kinds of learning
schema shows its potential in more confidently classifying un-
seen events to their correct super-categories.
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