
LEARNING A TREE OF NEURAL NETS

Arman Zharmagambetov Miguel Á. Carreira-Perpiñán

Dept. Computer Science & Engineering, University of California, Merced. Merced, CA, USA
Email: {azharmagambetov,mcarreira-perpinan}@ucmerced.edu

ABSTRACT

Much of the success of deep learning is due to choosing good neural

net architectures and being able to train them effectively. A type of

architecture that has been long sought is one that combines decision

trees and neural nets. This is straightforward if the tree makes soft

decisions (i.e., an input instance follows all paths in the tree with dif-

ferent probabilities), because the model is differentiable. However,

the optimization is much harder if the tree makes hard decisions, but

this produces an architecture that is much faster at inference, since

an instance follows a single path in the tree. We show that it is possi-

ble to train such architectures, with guaranteed monotonic decrease

of the loss, and demonstrate it by learning trees with linear decision

nodes and deep nets at the leaves. The resulting architecture im-

proves state-of-the-art deep nets, by achieving comparable or lower

classification error but with fewer parameters and faster inference

time. In particular, we show that, rather than improving a ResNet

by making it deeper, it is better to construct a tree of small ResNets.

The resulting tree-net hybrid is also more interpretable.

Index Terms— decision trees, deep neural nets, neural trees,

fast inference, interpretability

1. INTRODUCTION

In recent years, deep learning have been successfully applied in var-

ious machine learning problems such as image, audio and natural

language processing. One possible explanation of success and pop-

ularity of NNs (neural nets) is in their representation learning abil-

ity. Specifically, the set of nonlinear transformations performed by

neural net layers helps to obtain features that can capture important

properties of the input. Moreover, this type of models are usually

trained using SGD optimization in a GPU which allows scaling to

large datasets.

On the other hand, decision trees are also among one of the most

popular machine learning model which is widely used in practice.

Despite being pretty simple model, decision trees have number of

practical benefits. Prediction of particular instance follows a single

path which makes it very fast during inference time. Moreover, that

path usually can be formulated as “IF-THEN” rules which allows to

interpret a model. But training decision tree is a difficult optimiza-

tion problem, involving a search over a large set of tree structures,

and over the parameters at each node. A tree architecture is not

differentiable since each internal node of a tree defines hard split-

ting (based on thresholding). The most successful algorithms are

based on a greedy growth of the tree structure by recursively splitting

nodes. The most popular metohds include CART [1] and C4.5 [2].

In practice, it works well with axis-aligned trees only (a decision

node tests for a single feature) which limits input feature utilization.

These advantages and limitations of both decision trees and neu-

ral nets motivate for incorporating both of them to obtain a better

model. Specifically, trees would become more powerful by employ-

ing neural nets inside a node which results to better performance.

Moreover, the inference time of the whole architecture will be fast

due to hierarchical structure of the tree and the new model poten-

tially would be more interpretable than the regular NNs.

The problem is that this hybrid model inherits the same issues as

in regular trees regarding optimization, i.e. it is not straightforward

to train such model. Majority of the existing works on training hy-

brids of decision trees and neural nets either rely on transforming a

tree into so called soft decision tree [3, 4, 5] (i.e., an input instance

follows all paths in the tree with different probabilities) or take in-

spiration from CART-style algorithms by recursive greedy splitting

based on some criteria (e.g. impurity measure) [6, 7, 8]. Both of

these approaches have some pros and cons. For instance, the soft

decision trees can be easy to optimize due to differentiability of the

entire architecture, however, during inference, an instance follows

every path and assigns every leaf a certain probability which con-

siderably slows down inference time and affects negatively to the

interpretability. Though it is possible to apply some relaxation and

choose the path with the highest probability instead, but such ap-

proximations usually do not have any guarantees in terms of perfor-

mance. The problem with the second approach (i.e. generic greedy

tree growing) is that they have no guarantees concerning the opti-

mization of the desired loss (e.g. classification loss) and shown to be

highly suboptimal [9].

In this paper, we propose a novel method of training hybrids

of decision trees and neural nets which we call “a tree of neural

nets”. It trains a decision tree with hard split but without using re-

cursive greedy approach. We build on top of recently proposed Tree

Alternating Optimization (TAO) algorithm [10, 11]) since it shows

promising results in training a tree of arbitrary complexity [12] and

it has been successfully applied to train forests [13, 14]. Our final

model is a single binary tree (see fig. 1) with hard decision nodes that

has: neural nets in the leaves and sparse linear internal nodes (i.e.

oblique nodes) which operate directly on input feature vector (e.g.

raw image pixels). Training a truly hard tree allows a lightweight

inference and more model interpretability.

2. TREE OPTIMIZATION USING THE TAO ALGORITHM

The TAO algorithm takes as input a decision tree with a predefined

structure and optimizes that tree given the desired objective func-

tion such as misclassification error. In contrast with other methods,

each TAO iteration guarantees monotonic decrease of the objective

function and it can additionally penalize the complexity of the trees

by applying various regularizations (we use ℓ1-regularization in this

paper).

Assuming a tree structure T is given (say, binary complete of

some depth), consider the following optimization problem over its



parameters on a given training set {(xn,yn)}
N

n=1:

E(Θ) =
N
∑

n=1

L(yn, T (xn;Θ)) + λ
∑

i∈N

‖wi‖1 (1)

where Θ = {θi} is the parameters of all nodes i ∈ N of the tree.

The loss function L(y, ·) is 0/1 loss (although it is possible to use

any other classification losses). The regularization term penalizes

the parameters θi of each node. Here, the tree output is denoted as

T (·).
Separability condition, proposed in the original TAO paper,

states that any set of non-descendant nodes of a tree (e.g. all nodes

at the same depth) can be optimized independently. Here, we pro-

vide a high level overview (details can be found in [10, 11]). First,

we assume that nodes do not share common parameters, and second,

a non-descendant set of nodes have disjoint set of training points at

each node. This is because decision tree defines hard partition, and

thus each instance follows a unique root-to-leaf path. We also as-

sume that the remaining part of the tree is fixed (due to the usage of

alternating optimization). This allows the objective function defined

in eq. (1) to separate over any non-descendant set of nodes:

E(Θ) = Ei(θi) + Erest(Θrest) (2)

Note that Erest(Θrest) can be treated as a constant since we fix Θrest.

Now, we can apply separability condition to train leaves and de-

cision nodes. First, let us consider leaves. Clearly, leaves are non-

descendant w.r.t each others. By fixing the remaining parameters of

a tree, we can train each leaf independently. Note that instance fol-

lows root-to-leaf path and actual prediction is given by a leaf node.

Therefore, tree output from eq. (1) can be replaced by the output of

a leaf. But that output applies only to a subset of points reaching that

particular leaf. Therefore, it solves much simpler problem which is

a K-class classifier on that subset.

Similarly, separability condition can be applied to any subset of

decision (internal) nodes that are non-descendants, for example: all

nodes at the same depth. Below is the single decision node optimiza-

tion problem:

min
θi

Ei(θi) =
∑

n∈Ri

lin(fi(xn; θi)) + αφi(θi) (3)

where fi(·) defines a decision function in that particular node. It

can have only two possible outputs (namely right or left) because

we consider only binary trees. Moreover, since we are using oblique

trees, this thresholding function has a linear form with weight vector

wi ∈ R
D and bias bi ∈ R . We also define a loss function lin as the

loss incurred if choosing the right or left subtree. So, we encourage

fi(·) to send the instance to the best child which can be formulated as

the equivalent binary classification problem with pseudolabels y
n
∈

{−1,+1}. To sum up, optimizing over internal nodes is equivalent

to optimizing a linear binary classifier over {wi, bi} on the instances

that currently reach node i.

3. LEARNING A TREE OF NEURAL NETS

We propose the following method to optimize hybrids of decision

trees and neural nets. Suppose we have {(xn, yn)}
N

n=1 ⊂ R
D ×

{1, . . . ,K} is a training set of D-dimensional real-valued instances

and their ground truth labels (in K classes). The architecture of

a tree of neural nets is depicted in fig. 1 and it consists of linear

internal nodes and NNs at the leaves. Neural net architecture is fixed

f1(x) < 0 f1(x) ≥ 0

f2(x) < 0 f2(x) ≥ 0 f3(x) < 0 f3(x) ≥ 0

NNNNNNNN

Fig. 1. Architecture of a tree of neural nets with depth=2. Here

fi(x) = wT

i x+ bi.

input training set {(xn, yn)}
N

n=1 ⊂ R
D × {1, . . . ,K}

initial tree T (with random parameters)

repeat

for i ∈ nodes of T , visited in reverse BFS

if i is a leaf then

yi ← K class classifier (e.g. neural net)

on the training points that reach i

else

θi ← binary classification on the reduced set

until stop

postprocess T : remove dead branches & pure subtrees

return T

Fig. 2. Pseudocode for the TAO algorithm. Visiting each node in

reverse BFS order means scanning depths from depth(T ) down to 0,

and at each depth processing (in parallel, if so desired) all nodes at

that depth. “Stop” occurs when either the objective function changes

less than a set tolerance or the number of iterations reaches a set

limit.

and defined ahead of time as well as the depth of a tree. Initially,

internal nodes have random parameters. Initial parameters for leaves

can be either random or from the pretrained neural net. Each type

of nodes (leaf or internal) are optimized as follows: Internal node

training can be solved by fitting a linear binary classifier over the

“reduced set” as described in section 2. A linear classifier is directly

trained on input feature vector (e.g. raw image pixels). We force

linear classifier to be sparse to achieve high interpretability and fast

inference; Optimization over a Leaf is done by training a neural net

in a traditional way by applying SGD optimization over the subset

of training instances {(xn, yn)} that currently reach leaf i.

This leads to the simple and efficient alternating optimization

algorithm depicted in fig. 2 which repeatedly trains one subset of

nodes and fixes all the rest.

3.1. Computational complexity

Training time can be computed similarly as in [10, 11]. Consider

some depth of a tree. Each node i at that depth solves a reduced

problem on a subset of points (of size Ni) that currently reach node

i. Since the subsets Ni are disjoint, the union of all Ni gives us the

total set of points of size N . For internal nodes, each node solves

SVM problem on a subset of size at most Ni in time O(DNα

i ) for

α ≥ 1 (α depends on the SVM solver; section 4.2 in [15]). Hence,

since
∑

i
Nα

i ≤
(
∑

i
Ni

)

α
≤ Nα if α ≥ 1, solving all the SVMs

at the same depth is at most as costly as solving a single SVM on



Table 1. Structure of the neural nets at the leaves for MNIST,

Fashion-MNIST (FMNIST) and CIFAR10. “conv5-x” denotes x

convolutional kernels of size 5 × 5, “MP” stands for 2 × 2 max-

pooling, “FC” fully connected layer followed by softmax. For all

ResNets we use the same structure as in the original paper [20].

Model Structure

tao-mnist-lin FC

tao-mnist-cnn1 conv5-1 + MP + FC

tao-mnist-cnn2 conv5-5 + MP + conv5-10 + MP + FC

tao-mnist-cnn3 conv5-6 + MP + conv5-16 + MP + FC

tao-fmnist-lin FC

tao-fmnist-cnn conv5-32 + MP + conv5-32 + MP + FC

tao-cifar-resnet* see [20]

all N points. Moreover, we need to compute reduced set for each

node optimization which introduces some overhead. This overhead

is negligible at the internal nodes since propagating points through

the tree follows a single path and internal nodes are sparse linear

functions. But the noticeable overhead arises in the leaves due to

neural nets. Let us denote M as the computation time for passing a

single point through the neural net which is proportional to the neural

net complexity. Since the total number of points at some depth is

N then the total time for propagating them is proportional to MN .

So, the overall training time for the internal nodes at some depth is

O(DNα

i +MN) for α ≥ 1.

Each leaf is a K-class classifier and training them involves a

neural net optimization. Similarly, each leaf i obtains a subset of

points (of size Ni) and union of all Ni for all leaves gives us the

total set of points N . Therefore, the training time of all leaves is at

most as costly as training a single neural net on all N points.

4. EXPERIMENTS

We evaluate our trees of neural nets on MNIST [16], Fashion-

MNIST [17] and CIFAR-10 [18] classification benchmarks since

most of the competing neural tree models evaluate their perfor-

mance on them (see [5, 4, 8]). We compare our method with DT/NN

based models and related works which combine them.

We take as initial tree a deep enough, complete binary tree

with random parameters. Internal nodes are linear and trained using

ℓ1-regularized logistic regression implemented inside LIBLINEAR

[19] package. Leaves are neural nets of different complexity which

varies depending on dataset (see table 1). We pretrain neural net on

the whole training set for the fixed number of iterations and use it

as initialization for all leaves. All of our code is in Python and for

neural net training we use Tensorflow. We run TAO algorithm for a

fixed (most of the time 20) number of iterations to train our trees.

4.1. Model performance

Table 2 summarizes our results. In general, DT based models such

as Random Forest [21] are compact (i.e. has fewer parameters and

very fast during prediction time) but show poor performance on the

given classification tasks. Whereas state-of-the-art deep nets (e.g.

DenseNet [22]) show the lowest error but has many parameters and

can be heavy during inference. Our produced trees of neural nets

have comparable performance w.r.t. deep nets and they are shal-

lower trees with less model size and fast inference time. We also

50000

a
ir
p
la

n
e

a
u
to

m
o
b
ile b
ir
d

c
a
t

d
e
e
r

d
o
g

fr
o
g

h
o
rs

e

s
h
ip

tr
u
c
k

28238

a
ir
p
la

n
e

a
u
to

m
o
b
ile b
ir
d

c
a
t

d
e
e
r

d
o
g

fr
o
g

h
o
rs

e

s
h
ip

tr
u
c
k

12251

a
ir
p
la

n
e

a
u
to

m
o
b
ile b
ir
d

c
a
t

d
e
e
r

d
o
g

fr
o
g

h
o
rs

e

s
h
ip

tr
u
c
k

15987

a
ir
p
la

n
e

a
u
to

m
o
b
ile b
ir
d

c
a
t

d
e
e
r

d
o
g

fr
o
g

h
o
rs

e

s
h
ip

tr
u
c
k

21762

a
ir
p
la

n
e

a
u
to

m
o
b
ile b
ir
d

c
a
t

d
e
e
r

d
o
g

fr
o
g

h
o
rs

e

s
h
ip

tr
u
c
k

11202

a
ir
p
la

n
e

a
u
to

m
o
b
ile b
ir
d

c
a
t

d
e
e
r

d
o
g

fr
o
g

h
o
rs

e

s
h
ip

tr
u
c
k

10560

a
ir
p
la

n
e

a
u
to

m
o
b
ile b
ir
d

c
a
t

d
e
e
r

d
o
g

fr
o
g

h
o
rs

e

s
h
ip

tr
u
c
k

Fig. 3. Visualization of class distributions of a tree of neural nets ob-

tained by our algorithm for tao-cifar-resnet56. Clear semantic sepa-

ration of classes shows that each leaf specializes on some group of

classes (zoom in for a better view).

show that the produced trees are in general more interpretable (see

section 4.2).

For instance, our neural trees with extremely simple neural nets

on the leaves (e.g. “tao-mnist-cnn2”) outperforms various ensemble

methods like Random Forest or Alternating Decision Forests [23].

As for the neural nets, “tao-mnist-cnn3” produced by the algorithm

was able to achieve the same test error as LeNet5 [16] with far less

model size and inference time. Similar situation happens with other

datasets as well.

4.2. Model interpretability

Hierarchical structure of neural trees obtained by TAO algorithm al-

lows us to interpret a model to some extent. By “to some extent”

we mean that the resulting model will not be as interpretable as tra-

ditional decision trees but it is possible to extract some useful in-

formation out of it. Here, we need to compromise between model

interpretability and performance. Decision trees (axis-aligned) are

easy to interpret since root-to-leaf path usually can be formulated as

“IF-THEN” rules. Therefore, one can easily understand and justify

a certain decision made by the model. But they perform poorly on

number of tasks and sometimes one may need to use more powerful

model. Moreover, interpretability starts to vanish once we use en-

semble of trees (e.g. random forest) or very big trees. On the other

hand, deep neural nets are powerful and show state-of-the-art results

on various problems, but they are hard to interpret. Models between

DT and NN form some kind of path. We believe that our trees of

neural nets stand in the middle of this path finding a good balance

between high interpretability and high performance. For instance,

we visualize class distributions at each node for one of the obtained

trees (see fig. 3). We can clearly see that each leaf achieves some

form of specialization on subset of classes rather than classifying all

of them. This specialization potentially makes training a leaf easier

by focusing more on majority classes. Moreover, we observe that

this separation is not random but due to semantic similarity of the

objects. For example, human made objects were separated from ani-



Table 2. Performance comparison of different models on MNIST, Fashion-MNIST and CIFAR-10. “Params” - the total number of parameters

in the model. “Inference (flops)” - inference runtime in number of operations (scalar multiplications and additions). “Ensemble Size” indicates

the number of trees used. “Tree depth” shows the depth of a single tree in an ensemble. The numbers in brackets indicates our approximate

estimation of number of parameters and flops in the worst case.

Method Etest (%) Number of Inference Ensemble Maximum

parameters (FLOPS) size depth

M
N

IS
T

CART axis-aligned [1] 12.50 (4,096) (12) 1 12

CART oblique [1] 11.00 (3,210,480) (9,408) 1 12

Linear Classifier 7.81 7,840 15,680 - -

tao-mnist-lin 4.11 127,515 19,108 1 4

tao-mnist-cnn1 4.10 47,184 33,000 1 5

Random Forests [23] 3.21 (3,600,000) (2,500) 100 25

Shallow NDF (sNDF) [4] 2.80 (18M) (18M) 80 10

Alternating Decision Forests [23] 2.71 (3,600,000) (2,500) 100 25

Neural Decision Tree (NDT) [8] 2.10 (1,773,130) (502,170) 1 3

tao-mnist-cnn2 0.91 24,403 305,000 1 3

LeNet5-pruned [24] 0.82 12,915 - N/A N/A

Deep NDF (dNDF) [4] 0.70 (544,600) (4.3M) 10 5

Adaptive Neural Trees (ANT) [5] 0.69 100,596 - 1 2

LeNet5 [16] 0.67 431,000 4.2M N/A N/A

tao-mnist-cnn3 0.67 21,029 481,000 1 2

F
as

h
io

n
-M

N
IS

T

Logistic Regression [17] 16.00 7,840 0.02M - -

Linear Classifier [17] 15.75 7,840 0.02M - -

KNN [17] 14.00 60,000 60,000 - -

tao-fmnist-lin 13.15 62,720 0.02M 1 3

Random Forests [17] 12.10 - 5,000 100 50

MLP(1 hidden) [17] 12.30 79,400 0.16M N/A N/A

2 Conv+pooling [25] 8.84 3.2M 17M N/A N/A

tao-fmnist-cnn 7.84 252,353 4.2M 1 3

2 Conv+3 FC [25] 7.77 1.8M 10.67M N/A N/A

C
IF

A
R

-1
0

gcForest [26] 38.22 - - 500

ResNet20 [20] 8.51 0.27M (58.42M) N/A N/A

tao-cifar-resnet20 7.81 1.07M (58.42M) 1 2

ResNet32 [20] 7.42 0.46M (99.98M) N/A N/A

tao-cifar-resnet32 6.98 1.85M (99.98M) 1 2

ResNet56 [20] 6.73 0.85M (183.11M) N/A N/A

Adaptive Neural Trees (ANT) [5] 6.72 1.30M - 1 2

tao-cifar-resnet56 6.51 1.70M (183.11M) 1 1

ResNet110 [20] 6.43 1.70M (370.15M) N/A N/A

DenseNet-BC(k=24) [22] 3.74 27.2M - N/A N/A

mals at depth 1. Such distribution of classes came out automatically

as a result of training a tree, and we did not impose any constraints.

Similar observations were found in [5].

4.3. Inference runtime and model size

During prediction time, each point follows a single root-to-leaf path.

Computations on internal nodes in this path are extremely fast be-

cause each decision function is sparse oblique node. The main com-

putational intense part corresponds to the leaf which is a single NN.

Therefore, the total prediction time is proportional to the NN com-

plexity at the leaves. Our final trees also have a compact model size

since each leaf uses smaller neural net instead of having a single

but large deep net. Results on table 2 agree with above statements.

Both of the number of parameters and inference time are less than

the comparable NNs or neural tree models. For instance, our best

tree for MNIST shows the same test error as LeNet5 but has about

20 times fewer parameters and 10 times faster (in FLOPS).

5. CONCLUSION

We address an issue of optimizing a tree of neural nets. Such combi-

nation of neural nets and trees can potentially result to better models

which show a good balance between error, model size and inter-

pretability. We have presented our approach to train such hybrids

with complex structures. The proposed tree optimization method

is efficient and can be scaled to large data. The method produces

compact trees (fewer parameters and fast inference) which shows

comparable or better performance against SoA neural nets or other

models. Moreover, resulting trees make it possible to interpret.

6. ACKNOWLEDGMENTS

Work partially funded by NSF award IIS–2007147. The authors

gratefully acknowledge computing time on the Multi-Environment

Computer for Exploration and Discovery (MERCED) cluster at UC

Merced, which was funded by NSF Grant No. ACI–1429783.



7. REFERENCES

[1] Leo J. Breiman, Jerome H. Friedman, R. A. Olshen, and

Charles J. Stone, Classification and Regression Trees,

Wadsworth, Belmont, Calif., 1984.

[2] J. Ross Quinlan, C4.5: Programs for Machine Learning, Mor-

gan Kaufmann, 1993.

[3] Michael I. Jordan and Robert A. Jacobs, “Hierarchical mix-

tures of experts and the EM algorithm,” Neural Computation,

vol. 6, no. 2, pp. 181–214, Mar. 1994.

[4] Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, and

Samuel Rota Buló, “Deep neural decision forests,” in Proc.

15th Int. Conf. Computer Vision (ICCV’15), Santiago, Chile,

Dec. 11–18 2015, pp. 1467–1475.

[5] Ryutaro Tanno, Kai Arulkumaran, Daniel C. Alexander, An-

tonio Criminisi, and Aditya Nori, “Adaptive neural trees,” in

Proc. of the 36th Int. Conf. Machine Learning (ICML 2019),

Kamalika Chaudhuri and Ruslan Salakhutdinov, Eds., Long

Beach, CA, June 9–15 2019, pp. 6166–6175.

[6] Heng Guo and Saul B. Gelfand, “Classification trees with neu-

ral network feature extraction,” IEEE Trans. Neural Networks,

vol. 3, no. 6, pp. 923–933, Nov. 1992.

[7] Samuel Rota Buló and Peter Kontschieder, “Neural decision

forests for semantic image labelling,” in Proc. of the 2014

IEEE Computer Society Conf. Computer Vision and Pattern

Recognition (CVPR’14), Columbus, OH, June 23–28 2014, pp.

81–88.

[8] Han Xiao, “NDT: Neual Decision Tree towards fully func-

tioned neural graph,” arXiv:1712.05934, Dec. 16 2017.

[9] Trevor J. Hastie, Robert J. Tibshirani, and Jerome H. Friedman,

The Elements of Statistical Learning—Data Mining, Inference

and Prediction, Springer Series in Statistics. Springer-Verlag,

second edition, 2009.

[10] Miguel Á. Carreira-Perpiñán and Pooya Tavallali, “Alternat-

ing optimization of decision trees, with application to learn-

ing sparse oblique trees,” in Advances in Neural Informa-

tion Processing Systems (NEURIPS), S. Bengio, H. Wallach,

H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,

Eds. 2018, vol. 31, pp. 1211–1221, MIT Press, Cambridge,

MA.

[11] Miguel Á. Carreira-Perpiñán, “The Tree Alternating Optimiza-

tion (TAO) algorithm: A new way to learn decision trees and

tree-based models,” arXiv, 2021.

[12] Arman Zharmagambetov, Suryabhan Singh Hada, Miguel Á.

Carreira-Perpiñán, and Magzhan Gabidolla, “An experimen-

tal comparison of old and new decision tree algorithms,”

arXiv:1911.03054, Mar. 20 2020.

[13] Arman Zharmagambetov and Miguel Á. Carreira-Perpiñán,

“Smaller, more accurate regression forests using tree alternat-

ing optimization,” in Proc. of the 37th Int. Conf. Machine

Learning (ICML 2020), Hal Daumé III and Aarti Singh, Eds.,

Online, July 13–18 2020, pp. 11398–11408.

[14] Miguel Á. Carreira-Perpiñán and Arman Zharmagambetov,

“Ensembles of bagged TAO trees consistently improve over

random forests, AdaBoost and gradient boosting,” in Proc. of

the 2020 ACM-IMS Foundations of Data Science Conference

(FODS 2020), Seattle, WA, Oct. 19–20 2020, pp. 35–46.

[15] Leon Bottou and Chih-Jen Lin, “Support vector machine

solvers,” in Large Scale Kernel Machines, Léon Bottou,

Olivier Chapelle, Dennis DeCoste, and Jason Weston, Eds.,

Neural Information Processing Series, pp. 1–28. MIT Press,

2007.

[16] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick

Haffner, “Gradient-based learning applied to document recog-

nition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, Nov. 1998.

[17] Han Xiao, Kashif Rasul, and Roland Vollgraf, “Fashion-

MNIST: A novel image dataset for benchmarking machine

learning algorithms,” arXiv:1708.07747, Sept. 15 2017.

[18] Alex Krizhevsky, “Learning multiple layers of features from

tiny images,” M.S. thesis, Dept. of Computer Science, Univer-

sity of Toronto, Apr. 8 2009.

[19] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui

Wang, and Chih-Jen Lin, “LIBLINEAR: A library for large

linear classification,” J. Machine Learning Research, vol. 9,

pp. 1871–1874, Aug. 2008.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun,

“Deep residual learning for image recognition,” in Proc. of the

2016 IEEE Computer Society Conf. Computer Vision and Pat-

tern Recognition (CVPR’16), Las Vegas, NV, June 26 – July 1

2016, pp. 770–778.

[21] Leo Breiman, “Random forests,” Machine Learning, vol. 45,

no. 1, pp. 5–32, Oct. 2001.

[22] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-

ian Q. Weinberger, “Densely connected convolutional net-

works,” in Proc. of the 2017 IEEE Computer Society Conf.

Computer Vision and Pattern Recognition (CVPR’17), Hon-

olulu, HI, July 21–26 2017, pp. 2261–2269.

[23] Samuel Schulter, Paul Wohlhart, Christian Leistner, Amir Saf-

fari, Peter M. Roth, and Horst Bischof, “Alternating decision

forests,” in Proc. of the 2013 IEEE Computer Society Conf.

Computer Vision and Pattern Recognition (CVPR’13), Port-

land, OR, June 23–28 2013, pp. 508–515.

[24] Miguel Á. Carreira-Perpiñán and Yerlan Idelbayev,

““Learning-compression” algorithms for neural net prun-

ing,” in Proc. of the 2018 IEEE Computer Society Conf.

Computer Vision and Pattern Recognition (CVPR’18), Salt

Lake City, UT, June 18–22 2018, pp. 8532–8541.

[25] “Official web page of the Fashion-MNIST dataset,”

https://github.com/zalandoresearch/fashion-mnist.

[26] Zhi-Hua Zhou and Ji Feng, “Deep forest: Towards an alterna-

tive to deep neural networks,” in Proc. of the 17th Int. Joint

Conf. Artificial Intelligence (IJCAI’01), Seattle, Washington,

USA, Aug. 4–10 2001, pp. 3553–3559.


