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ABSTRACT OF THE DISSERTATION

Learning Tree-Based Models with Manifold Regularization:

Alternating Optimization Algorithms

by

Arman Zharmagambetov

Doctor of Philosophy in Electrical Engineering & Computer Science

University of California Merced, 2022

Professor Miguel Á. Carreira-Perpiñán, Chair

Decision trees (DT) are considered to be one of the oldest machine learning

models which received a lot of attention from practitioners and research commu-

nity. Although their roots are in the 1950s, they became popular in the early

1980s with developing popular methods, such as CART and C4.5. They are con-

ceptually simple yet powerful. State-of-the-art frameworks, such as XGBoost or

LightGBM, rely on them as base learners, but they have been used as well as

standalone predictors.

Despite the rich history of decision trees and existence of numerous methods,

their applicability beyond traditional supervised learning has been explored in

limited extent. For instance, various fast growing ML subfields, such as semi-

supervised and self-supervised learning, nonlinear dimensionality reduction (e.g.

nonlinear embeddings), etc. have been barely used with trees. What is common

to most of these tasks is that the objective function takes a certain form, which

involves manifold regularization to exploit the geometry of the underlying data

distribution. For example, a common assumption is that similar instances have

similar predictions. However, incorporating this type of regularization is non-trivial

with decision trees. The main reason is that the learning decision trees from data

(even in supervised learning setup) is still an open research problem because it

involves solving non-trivial combinatorial optimization problem. In fact, finding

xii



an optimal decision tree or even constant-factor approximation is NP-hard in most

formulations of the problem. Adding manifold regularization term into an overall

objective makes the problem even harder to solve.

In this dissertation, we study decision trees and, more generally, tree-based

models under above-mentioned settings, i.e., involving manifold regularization.

We argue that these type of problems carry a great practical importance but

directly solving them is intractable (for decision trees). Using semi-supervised

learning and nonlinear dimensionality reduction as examples, we derive a generic

algorithm to solve such optimization problems. It is based on a reformulation of

the problem which requires iteratively solving two simpler problems. One problem

always involves supervised learning of a tree, which we solve by the Tree Alternating

Optimization algorithm. The second one depends on a particular problem type

and can be one of the following: solving a linear system, optimizing non-linear

embeddings or something else. We also show that the algorithm is scalable and

highly effective on number of practical tasks.
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Chapter 1

Introduction

Decision trees are one of the most popular learning models that have been

widely used in many applications across different domains [109, 84]; and they

have received much praise in machine learning and statistical literature [57, 84, 1].

Formally, decision tree is a hierarchical model (see fig. 1.1; bottom) which splits

an input (or feature) space into local regions (e.g. polytope) and applies the same

predictive function (like a constant) to all instances falling into the same region.

Here, a region is identified by the sequence of recursive splits known as root-to-leaf

path. In terms of architecture, it consists of decision nodes (having more than one

child) and leaves (or terminal nodes that do not have any child). Each decision

node defines a discrete split function (e.g. x1 > 38.5 in fig. 1.1) which sends an

input instance to the corresponding child. We repeatedly apply a split function

(starting from the root) until we reach a leaf. The actual model output (e.g.

predicted class) is produced by a leaf which applies its predictive function (e.g.

linear, constant, etc.) to the given input. The described model is clearly nonlinear

and has some unique advantageous (see fig. 1.1; top): fast training/prediction

runtime, interpretability (since root-to-leaf path can be formulated as “IF-THEN”

rules), handling categorical features naturally, etc. It is even the case that decision

trees are preferred over more accurate methods because of these properties.

The problem of learning a decision tree model from data consists of: 1) learn-

ing a structure of a tree (maximum depth, split type, number of children, total

number of nodes, etc.) and 2) optimizing over nodes’ parameters (threshold value,

1
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Characteristics Neural SVM Trees k-NN,
Nets (FF) Kernels

Natural handling of ▽ ▽ △ ▽
categorical features

Handling of missing values ▽ ▽ △ △
Robustness to outliers in ▽ ▽ △ △
input space

Insensitive to monotone ▽ ▽ △ ▽
transformations of inputs

Computational scalability ▽ ▽ △ ▽
(large N)

Ability to deal with ▽ ▽ △ ▽
irrelevant inputs

Interpretability ▽ ▽ � ▽
Predictive power △ △ ▽ △

Figure 1.1: Top: Some characteristics of different methods taken from [57]. Keys:
△ = good, ▽ = poor, � = fair. Here, we use regular feed-forward neural nets
(FF–feedforward) and conventional axis-aligned Trees. Bottom: Example of a
(hypothetical) decision tree taken from [1]. Each root-to-leaf path can be written
as a conjunctive rule constructed from decision nodes.

feature index, etc.). We will define a tree learning problem more formally in sec-

tion 1.2. The rich history of decision trees (the earliest works are originated from

1950s) allowed to develop various methods and algorithms to train them. However,

most of those algorithms are based on greedy recursive partition procedure (like

CART [22]) which is known to be highly suboptimal. Another major problem is

that most of the existing algorithms generate trees with high variance. That is, a

small change in data can result to completely different trees (in terms of structure
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and parameters at each node). This typically leads to high error on test data

(i.e., generalization error). The reason for this instability is the greedy nature

of most algorithms: the error is accumulated starting from the root split down

to all splits below it [57]. A recent non-greedy algorithm, Tree Alternating Opti-

mization (TAO) [26, 25], may change this situation. TAO can train decision trees

of arbitrary complexity (e.g. axis-aligned, oblique, neural, etc.) and guarantees

monotonic decrease of an objective function over the entire decision tree, which

typically leads to finding much better approximate optima than CART-type algo-

rithms. TAO has been shown to find much better trees under a variety of losses,

regularization and types of tree, as well as forests, and scales well to large datasets,

see e.g. [146, 142, 148, 143, 48, 30].

A huge success of TAO in training decision trees and forests in traditional

supervised learning setting motivated us to extend it to other machine learning

tasks, such as semi-supervised and self-supervised learning, dimensionality reduc-

tion, clustering, etc. A particular interesting technique that appears commonly in

these tasks is called manifold regularization. At a high level, it exploits the shape

of a dataset or the geometry of the underlying data distribution to constrain the

model that should be learned. For example, a common assumption is that similar

instances have similar predictions. Formally, given a training dataset D and a

target model f with parameters Θ, a learning algorithm will attempt to minimize

the following regularized objective:

min
f

L (f(D;Θ)) + α‖f‖l + γ‖f‖I (1.1)

where L is the loss function defined by a problem (e.g. cross-entropy, reconstruction

error, etc.). The first regularization term α‖f‖l is commonly referred as general-

ized Tikhonov regularization which penalizes the complexity of the model. As for

the second term γ‖f‖I , under the manifold assumption in machine learning, the

data do not come from the entire input space X, but instead from a nonlinear

manifold M. And intrinsic geometry of this manifold is used to determine the

second regularization norm. In fact, there are many possible choices for ‖f‖I .
Some natural choices involve a measure of smoothness of model f , which can be

measured via the gradient ∇M on manifold M. This gives one appropriate choice
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for this regularizer:

‖f‖I =
∫

x∈M

‖∇Mf(x)‖2 dp(x). (1.2)

In practice, this integral is infeasible to compute, but can be estimated. One

common choice is called a graph prior and it is defined as:

‖f‖I =
1

N2
fTL f (1.3)

where f is a vector of values f , N is the size of dataset and L is the graph Laplacian,

which we will define later in chapter 3. While the specific form of the manifold

regularization is not relevant here, what matters is that it can be used to formulate

variety of problems in machine learning. For example, it allows naturally extend

supervised learning algorithms in semi-supervised learning setting as follows. We

are given the dataset D = Dl ∪ Du, where Dl = {xn, yn}ln=1 ⊂ R
D × R is the

labeled portion of the data, with l points, and Du = {xn}Nn=l+1 ⊂ R
D is the

unlabeled portion, with N − l points. Then our goal is to minimize the following

regularized objective:

E(Θ) =

l
∑

n=1

L (f(xn;Θ), yn) + γ

N
∑

n,m=1

wnm(f(xn;Θ)− f(xm;Θ))2. (1.4)

where the manifold regularization appears as weighted distances between all pair

of points and can be reformulated as the graph Laplacian term shown in eq. (1.3).

Its interpretation in this particular context is that the data points with different

labels are not likely to be close together.

Nonlinear dimensionality reduction is another field where manifold regulariza-

tion appears. In this context, they are closely related to spectral techniques and

does not necessarily takes the form of graph Laplacian. For example, the elastic

embedding [24] optimizes:

E(X) =

N
∑

n,m=1

(

wnm‖xn − xm‖2 + αe−‖xn−xm‖2
)

(1.5)

where the first term encourages projecting similar patterns near each other, while

the second term repels all pairs of projections. Other algorithms of this type
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are stochastic neighbor embedding (SNE) [58], t-SNE [127], the Sammon map-

ping [112], etc. Although the literature on this topic typically does not explicitly

mention the name manifold regularization, but the form of the loss has similar

meaning: assume smoothness of f to learn the parameters of a model. Because of

this assumption, a manifold regularization can use input data to inform where the

model is allowed to change quickly and where it is not.

Although TAO shows remarkable results on several supervised learning tasks,

extending it to above-mentioned problems is problematic. As we will see later in

chapter 2, TAO relies on separability property of the loss function, i.e., the loss

should decompose over each instance. However, this is not the case with manifold

regularization, where we typically have pairwise distances involved in a certain

form. Therefore, TAO cannot be applied as is. Other tree learning methods have

not been successful as well. Although the literature on the topic of tree-based

models is immense (see [153, 128]), incorporating decision trees into manifold reg-

ularization framework has received almost no attention. One possible explanation

is the difficulty of the optimization problem. As one can see, loss functions in

eq. 1.4-1.5 are non-linear involving weighted pairwise distances. Minimizing an

objective with such regularization is non-trivial when we have decision trees as a

predictive model. It also destroys the smoothness assumption, which is now limited

to closeness measure in discrete space.

1.1 Contributions

In this dissertation, we study the learning algorithms for decision trees un-

der manifold regularization framework. We argue that this has a great practical

interest and opens interesting research directions within machine learning. Fur-

thermore, we derive a generic algorithm to solve such non-trivial optimization

problems. It is based on a reformulation of the problem which requires iteratively

solving two simpler problems. One problem will always involve supervised learning

of a tree. The second one will depend on a particular problem type and can be

one of the following: solving a linear system, optimizing non-linear embeddings or
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something else. Below we give a summary of every chapter in this dissertation.

• In the remaining part of this chapter we provide an overview of tree-based

models and the corresponding learning problem (section 1.2). We also present

an extensive review of related work on decision trees and their applicability

beyond supervised learning (section 1.3).

• In chapter 2 we review the Tree Alternating Optimization (TAO), a recently

introduced algorithm to train tree-based models. Using TAO is critical to

the success of our approach. Therefore, we provide in-detail description of

the algorithm with specific examples. To demonstrate the full performance

of TAO, we provide experimental results on standard machine learning tasks

(section 2.2), where TAO shows outstanding results, exceeding the perfor-

mance of the state-of-the-art methods. We also show its scalability feature

on extreme classification problems (section 2.3).

• Chapter 3 describes the first example where we apply manifold regularization

with decision trees, namely semi-supervised learning. We first formulate an

optimization problem and then propose an efficient and scalable iterative

algorithm to solve it. We also discuss how to generalize this framework to

other models and demonstrate our experimental findings.

• In chapter 4 we consider how to train nonlinear embeddings where out-of-

sample mapping is obtained via decision trees. This can be considered as an-

other example of applying manifold regularization with decision trees. These

final two chapters suggest a generic way of training decision trees under man-

ifold regularization, which we derive in chapter 4 as well. We also discuss

experimental results with specific focus on interpretability.

• Finally, chapter 5 concludes this dissertation and discusses future research

directions.
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1.2 Overview of the tree learning problem

In this section, we introduce a generic tree learning optimization problem and

define some useful notations which will appear throughout this dissertation. By

a tree learning, we mean building a model (using a certain algorithm) based on

sample data, known as training dataset, in order to make predictions or decisions.

More specifically, we are given a training dataset D = {(xn,yn)}Nn=1 ⊂ R
D×R

K of

size N with D-dimensional real-valued instances and their labels (in R
K). This is a

typical supervised learning setup where we have an access to all labels. Please note

that the exact form of labels is dictated by the nature of a problem: real-valued

output for regression (RK), indicator of a category for classification (K), etc. When

labels are not provided and we still want to obtain some insights from data, the

problem is known as unsupervised learning in which case D = {(xn)}Nn=1 ⊂ R
D.

Lastly, in semi-supervised learning setup, we have a mixture of both with dominant

portion of unlabeled data.

Next, decision tree can be considered as a mapping applied to a single instance

x which produces a certain output (e.g. prediction of a class). Namely, the tree’s

prediction T(x;Θ) for an instance x is obtained by routing x from the root to

exactly one leaf and applying its predictor (as was described earlier). Here, we

denote T: R
D → R

K as the tree predictive mapping with trainable parameters

Θ = {θi}i∈N where each node (both decision and leaf) has its own trainable

parameters θi. The nodes in a tree are indexed in set N = {1...Nd} where Nd is

the total number of nodes. Now the question is how the routing of x happens?

For that, we need to introduce a decision function fi(x; θi): R
D → Ci which maps

an input instance to an indicator variable denoting which child comes next. For

example, if we have a binary tree, then Ci = {lefti, righti} ⊂ N . We continue

this procedure of applying fi(·) recursively until we reach a leaf. An exact form

of fi(·) defines type of decision nodes and consequently type of a tree. Several

commonly used decision node types are listed below which will be the main focus

of this thesis:

• Oblique (linear multivariate) trees which have a hyperplane based split.

That is, the corresponding decision function fi(·) has a form: “go to the right
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child if fi(x) = wT
i x+wi0 ≥ 0 and to the left child, otherwise”. Here, wi, wi0

are node parameters, i.e. θi = {wi, wi0}.

• Axis-aligned (univariate) trees: each decision node i has a decision func-

tion “go to the right child if fi(x) = xj ≥ bi and go to the left child, other-

wise”, where xj is the jth value of the input feature vector x and bi (threshold

value) is the parameter of node i. Axis-aligned trees are the special case of

the oblique trees where wi is an indicator vector for a single feature.

Finally, each leaf i (i.e., terminal node which does not have any child) has a

predictor function gi(x; θi): R
D → R

K that produces the actual output/prediction.

We will discuss the specific form of the leaves in the next sections. But a typical

choice is a constant function or rarely a linear transformation followed by some

non-linearity (e.g. softmax).

Using all these definitions and notations, we can state the formal optimization

problem:

min
T,Θ

L(T(D;Θ)) + α‖T‖l (1.6)

where L is the loss/objective function defined by a problem (e.g. cross-entropy,

RMSE for supervised learning; reconstruction error, clustering loss for unsuper-

vised learning, etc.) and α‖T‖l is a regularization term which penalizes a model

(e.g. number of nodes, model parameters) to achieve a better generalization and/or

to obtain more compact tree. Another common name for this term is generalized

Tikhonov regularization. The user-defined hyperparameter α ≥ 0 controls the

trade-off between the loss and the regularization. Note that the given minimization

problem is over a tree structure T and a tree parameters/weights Θ. This makes it

much harder to solve since the space over tree structures is a discrete subspace and

the solution involves combinatorial optimization. In fact, finding optimal decision

trees or even constant-factor approximations is NP-hard in most formulations of

the problem [62, 54] and we will discuss this further in the next section. Therefore,

it is sometimes reasonable to assume that the initial tree structure is given either

by generating a random tree of depth ∆ (not necessarily complete) or initializing

it from some algorithms (like CART). In this case, the problem reduces to learning
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the parameters of a tree with the given structure by minimizing:

min
Θ

L(T(D;Θ)) + α
∑

i∈N

φi(θi). (1.7)

Note that in this formulation, the regularization term penalizes the parameters θi

of each node, where φi is e.g. a norm such as ℓ1 or ℓ2. It worth to mention that

even in this setup (fixed tree structure) the problem is still NP-hard. Furthermore,

as a specific example, training a regression tree typically involves the following

optimization problem:

min
Θ

N
∑

n=1

‖yn −T(xn;Θ)‖22 + α
∑

i∈N

φi(θi). (1.8)

In the next section, we will review the related work on decision trees and discuss

various attempts to approximately solve the optimization problems in eq. (1.6)-

(1.8).

1.3 Related work on decision trees

Decision trees (and forests) have been extremely well studied in machine learn-

ing and statistical literature [57, 150, 76]. Although their roots are in the 1950s,

they became really popular in the early 1980s. In this section, we review a litera-

ture on decision trees which includes the most popular, long-established methods

and some important research frontiers. We will start with reviewing various meth-

ods and algorithms to train a single tree. Then we consider different techniques

to ensemble them into a forest which are commonly used models in recent years.

Unfortunately, most of these works focus on only fully supervised learning sce-

nario. Therefore, we also list and describe methods which can train decision trees

in unsupervised/semi-supervised learning setup at the end of this section.

1.3.1 Learning a single tree

Most of the papers presented in this section consider binary axis-aligned trees

with constant leaves which are commonly accepted as the classical type of deci-

sion trees and they are predominantly used in many applications. That is, each
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decision node i has a decision function “go to the right child if xj ≥ bi, go to the

left child otherwise”, where xj is the jth value of the input feature vector x and bi

is the threshold value of the node i. A feature indicator j and thresholding value

bi are learnable parameters. As we have discussed earlier, even in such relatively

simple construction, training a single decision tree on data involves searching over

a huge space of tree structures (number of children, number of nodes, depth, etc.)

and optimizing over parameters at each node (e.g. thresholding value) which is

non-differentiable and severely non-convex problem. We also discussed that finding

optimal decision trees or even constant-factor approximations is NP-hard in most

formulations of the problem [62, 54]. Therefore, various (mostly approximate)

methods have been proposed to tackle this issue. Based on textbooks on statisti-

cal/machine learning [16, 57, 94, 1] and specialized review papers [22, 65, 12], we

group the literature on learning decision trees into the following three categories:

Greedy recursive splitting This is considered as the most popular (as of now)

method for constructing trees [16, 57, 109, 110, 84]. As a convincing evidence,

the leading and successful softwares for routine machine learning tasks (such as

XGBoost [33], LightGBM [71], CatBoost [104], scikit-learn [100], etc.) use this type

of procedure to construct decision trees. Historically, this approach is originated

from CART, proposed by [22], and other related algorithms, such as ID3 [105],

C4.5 and C5.0 [106], etc. Multiple public and commercial implementations of

these exist, e.g. [121, 75, 100]. There are more recent developments [139, 109,

110, 84] which aim to improve over previous algorithms by adding a number of

heuristics. Although many variations exist that fall into this category, many of

them capitalize on the top-down approach to build a tree. That is, we start

from the root and recursively split a node into two or more children based on

solving a “purity” optimization problem (e.g. minimizing Gini index or entropy),

which seeks a partition of the space such that the training instances reaching

each child belong to one class or as few classes as possible (occasionally this is

called a variance-based criterion). The procedure is recursively repeated until each

leaf contains instances from the same class (or some other stopping criterion is

satisfied). Note that once we split the node, it is fixed and it will not be modified
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afterwards (thus the name greedy). Except the pruning phase, where the resulting

(usually large) tree is optionally pruned in order to reduce overfitting. This is

done by removing subtrees to optimize a cost-complexity trade-off. However, the

node parameters are still fixed and not allowed to change. This greedy nature of

the algorithm and the fact that it does not optimize an objective function directly

over the tree parameters (but rather uses indirect measures like purity) makes such

trees produce severely suboptimal trees [57].

Approximate brute force search These approaches attempt to find an op-

timal decision tree (which is an NP-hard problem) using a variety of heuristic

methods or using constrained optimization formulation (mainly via mixed-integer

programming). Bennett [9, 10] formulates a large linear programming over a tree

with the fixed structure for binary classification problem. The problem is now con-

vex and the global optimum can be found. However, the resulting LP is so large

that the problem size grow exponentially with the tree and dataset sizes (trees

with only 4 internal nodes were used experimentally). Another group of methods

[4, 123] focus on efficient enumeration over a space of small trees (up to depth 3).

Motivated by the recent advances in branch-and-bound techniques implemented in

commercial solvers (such as Gurobi [52]), Bertsimas and Dunn [12] formulate the

tree optimization as a mixed-integer optimization (MIO). This is done by introduc-

ing binary variables and carefully designed constrains to encode a tree structure.

Then, it is straightforward to apply state-of-the-art MIO solvers to solve the prob-

lem. In practice, the method is only applicable to small datasets and small trees

(up to depth 4). More recent work from [152] attempts to make this MIO formu-

lation scalable to larger datasets (but still using small trees) by selecting a subset

of points. The next series of papers [61, 82] follow a similar approach but use a

custom branch-and-bound algorithm. Moreover, they propose a number of addi-

tional techniques (e.g. using a dynamic programming) to accelerate the training

procedure. However, they are restricted to binary inputs and outputs only (i.e.

boolean functions), which requires discretization of the continuous features. The

main problem with all of these methods is that they still have an exponential time

complexity in most cases. Since running them to completion for larger trees and/or
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larger datasets is intractable, they are almost never used for practical applications.

It is still possible to stop earlier with an approximate solution. However, there is

no possible way of estimating how good that approximate solution w.r.t. global

optima. Although some works provide a certain bounds on the estimate [82].

Non-greedy, global optimization algorithms In contrast to greedy methods

and similar to brute force search methods, these type of algorithms focuses on

a joint optimization of the decision tree nodes under a global objective function.

However, various approximations are used instead of directly addressing an NP-

hard problem. One approach is to ignore the discrete nature of the decision tree

and make it probabilistic (or soft), where an input is routed to each leaf with a

certain probability. Then the optimization becomes amenable to gradient-based

methods. Another possible approach is to learn the parameters of a tree by maxi-

mum likelihood optimization with an Expectation Maximization (EM) algorithm

[40]. The method is originated from the hierarchical mixtures of experts (HME),

proposed by Jordan and Jacobs [68]. It is still possible to make the resulting tree

hard again by following a path with the highest probability (or choosing a child

with the highest probability). Obviously, such approximation introduces subop-

timality. Norouzi et al. [98, 97] directly optimize a tree with discrete decision

nodes by formulating a convex-concave upper bound on the tree’s empirical loss

and optimize that loss using stochastic gradient descent (SGD). The initial tree

structure must be provided (e.g. initialized from CART). The use of SGD enables

efficient optimization for large scale datasets. However, the method does not have

guarantees to decrease the desired loss function (e.g. misclassification loss) over a

decision tree and may even marginally worsen an already induced tree. The TAO

algorithm, proposed by Carreira-Perpiñán et al. [26, 25], optimizes a decision tree

with predetermined structure and can be applied to minimize the desired objec-

tive function (e.g. classification, regression). Each iteration of the TAO algorithm

guarantees monotonic decrease of the objective function and it generalizes well by

imposing various regularizations (e.g. ℓ1-regularization). TAO has been success-

fully applied to train a single decision tree of increasing complexity (axis-aligned,

oblique, neural trees) [147, 143] as well as to construct various tree ensembles
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[142, 30]. We provide a detailed description of the algorithm in section 2. To sum

up, non-greedy algorithms show promising results and have been gaining popular-

ity in recent years. Though they are less popular compared to greedy recursive

partition algorithms, they have a huge potential to replace them in the future.

1.3.2 Combining multiple trees into a forest

The true power of decision trees comes when combining (or ensembling) them

into a forest. These are among the most successful and widely used of all machine

learning models (in isolation or combined with other models, such as deep nets),

and they are well-studied in the statistical and machine learning literature [57,

21, 23]. They are widely used in many applications, such as data mining [129],

computer vision for body and visual tracking [36, 140], face and object detection

[117, 130], shape recognition [2] and many other applications [35].

The success of forests is due to their ability to achieve low bias and low variance

by combining weakly correlated trees, for which different ensembling mechanisms

exist. The main approaches for ensembling different trees are based on bagging

[20], where individual trees are trained independently on bootstrap samples of the

data; or on boosting [113, 114], where individual trees are trained sequentially on

the whole data but with adaptively weighted instances. The final prediction is

usually obtained by majority voting (for classification problems) or averaging (for

regression problems). The are many variations of bagging and boosting. Random

Forests [19, 15] combine bagging with choosing random feature subsets at each node

when considering candidate splits to maximize a purity measure. Extremely ran-

domized trees (Extra-Trees) [49] combine bagging with random splits. AdaBoost

[46, 114] trains each tree sequentially by reweighting the samples, i.e. it assigns

higher weights for misclassified samples and lower weights for the correctly classi-

fied ones. Variation of boosting called gradient boosting [47] which approximates

functional gradient of the loss function and trains each tree to minimize a distance

to that gradient. It has attracted much attention in recent years, particularly

with the availability of efficient implementations that can scale to large datasets

[33, 71]. Other variations include random subspace forests [59] and rotation forests
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[108]. After several decades of active research on decision tree ensembles, it is fair

to say that the methods that at present are recognized as the state-of-the-art are

Random Forests, AdaBoost and gradient boosting. What is common to all these

approaches is the way they construct the individual trees: they use a top-down

induction algorithm such as CART that recursively splits nodes which are known

[57] to be highly suboptimal tree optimizers. This has led to a perception that

decision trees are generally low-accuracy models in isolation [57, p. 352], although

combining a large number of trees does produce much more accurate models.

Other methods exist which combine the individual tree learning with the en-

sembling. Schulter et al. [117, 116] use a variation of the boosting algorithm which

alternates between: greedily adjusting depth of a tree (or ensemble of trees) using

some purity criterion and updating weights for each training sample. Zhou and

Feng [151] apply cascading technique for random forests of a large size to achieve

comparable performance against neural nets for some tasks. Several works [45, 135]

construct ensembles using nested dichotomies for multiclass problems. The idea

is to learn a multiclass problem using several binary classifiers (as an alternative

to one-vs-all or ECOC). The training algorithm in all of these methods is quite

more complicated and it is not clear that it translates into more accurate or com-

pact forests, although they may be preferable in particular applications. Some

methods experiment with different losses, such as robust losses [80]. Finally, some

techniques exist to take an existing forest and postprocess it. Pruning a forest by

removing redundant trees can be done greedily with forward selection [150]. This

can often reduce the size of a forest with little degradation of its accuracy. Also,

it is possible to optimize jointly the constant predictors at the leaves of all trees

(keeping the decision nodes and tree structure the same) and increase the accuracy

a bit [107].

1.3.3 Extreme classification

Classification problems having thousands or more classes naturally occur in

some ML problems, e.g. in Natural Language Processing (NLP): language mod-

eling, document classification, etc. Handling all classes in regular softmax or in
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one-vs-all fashion would be very slow at inference time, because every class score

must be calculated to find the top class. We decided to provide a separated liter-

ature review on extreme classification since decision trees have been actively used

in this area [7, 37]. Nevertheless, traditional axis-aligned decision trees, such as

C4.5 or CART, have very low accuracy [34]. Nested dichotomies [45] rely on a

tree structure to divide a set of classes into two disjoint subsets and learn a binary

classifier to separate them. However, human expertise is necessary to obtain a

tree structure and class assignments. Additionally, the total error of the model

accumulates over the depths since there is no way to refine binary classifiers once

split is performed. More recent works that are specifically designed to cope with

large number of classes [13, 7] employ similar idea but take into account class

distributions to generate a tree structure. Other tree-based approaches include

global or partial optimization over parameters of a tree. For instance, Daume et

al. [37] propose to use a fixed structured tree where each node has much smaller

sized linear multi-class classifier. Sun et al. [118] extend this work by allowing a

tree structure to grow. Other works capitalize on generating “perfectly” balanced

trees to guarantee logarithmic inference time [67, 34]. Optimizing a tree parame-

ters in these methods is typically done by approximating gradient information in

a certain way (possibly in “online” fashion). Other tree-based methods exist with

more focus on large scale extreme multi-label classification and ranking [103, 14].

In the context of NLP, most of the above-mentioned methods are applicable

in the number of practical applications, such as large-scale document classification

and language modeling. Moreover, there are methods that are specifically designed

for language modeling tasks where vocabulary size can be very large and it demands

efficient computation of the softmax outputs. Hierarchical softmax (HSM) [51] is

an approximation which employs a “soft” decision tree with linear nodes to address

this issue. HSM has been actively used in the problem of learning distributed

representations of words [8, 91] where it can be jointly trained with neural nets

of various complexity [93]. Follow up works on this topic [92, 88] propose various

initializations for the tree structure (e.g. random, Huffmann tree, etc.). Although

the training of HSM can be efficiently done using specific loss functions, but during



16

prediction time, input follows all children with a certain probability which brings

no speedup compared to the plain softmax. It is still possible to transform a

soft tree back into a “hard” tree once training is done (by choosing a child with

the highest probability at each split). For example, a recent work from Han et

al. [53] apply a similar approach. Recently, certain pruning mechanisms have been

proposed as an alternative approach to speed up the prediction time [17].

1.3.4 Beyond supervised learning

Although the literature on this topic is immense, the study of decision trees

beyond supervised learning is somewhat limited. For instance, semi-supervised

learning (SSL) can be considered as an extension to the regular supervised learning,

which incorporates both labeled and unlabeled sets of data into a model training.

This specific area has received almost no attention in context of decision trees.

Probably, this is due to difficulty of the optimization problem. Most SSL methods

are based on adding a graph prior (or similarity matrix) as regularization to exploit

the geometry of the underlying data distribution [6, 149, 154, 155]. Minimizing

an objective with such regularization is non-trivial when we have decision trees

as a predictive model. That said, several attempts have been made to apply

SSL for trees. Levatic et al. [78] modify a splitting criterion for recursive tree

induction by taking into account unlabeled data. That is, a splitting score for

each [feature, threshold] pair consists of two parts: the traditional purity score

(e.g. Gini index) for labeled data and a “clustering” score for all available data.

Tanha et al. [119] apply a self-training framework [138] to train classification trees

with labeled and unlabeled data. Note that self-training is a generic framework

that can be applied with any classifier which predicts class probabilities. It trains

a classifier iteratively where the first iteration includes only labeled data. After

that, it uses model predictions and adds the most confidently predicted instances

to enrich the amount of supervision. Another direct approach is to apply a label

smoothing technique [154] to propagate label information to all data and then fit

a tree. This method has been recently reused within the graph neural networks

framework to train boosted trees [32, 66]. Finally, Kemp et al. [72] proposed a
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Bayesian approach where unlabeled data assist in inferring a latent tree structure

from a distribution over trees. The limitations of this approach are that it covers

classification tasks only, and it uses Markov Chain Monte Carlo to sample from

the distribution over trees, which leads to scalability issues.

Dimensionality reduction (DR) (more specifically, non-linear DR) is another

area where decision trees have been rarely used. The natural application in this

scenario is to use trees as low dimensional mappings and focus on interpretability.

The problem with this is the same as in SSL: difficulty of the optimization problem

which involves DR objective. In this regard, some work has proposed using soft

decision trees in an autoencoder framework (i.e., training the decoder-encoder to

minimize the reconstruction error of the training instances) [64]. This makes the

optimization simple, since soft trees are differentiable, but soft trees are hard to

interpret, more so if the input instance has many features (as is to be expected

in DR). We are aware of very little work, if any, regarding learning interpretable

mappings for nonlinear embeddings such as t-SNE. An obvious approach would be

to optimize the embedding and then fit to it a sparse linear or otherwise nonlinear

but interpretable mapping (e.g. decision trees), but as we note later this is subop-

timal. Since the form of our projection mapping is a tree of linear mappings, this

can also be regarded as a form of local DR. Examples of this are mixtures of factor

analyzers [50] or of PCAs [70, 122] and related models [111].



Chapter 2

The Tree Alternating

Optimization Algorithm

This chapter provides an overview of the Tree Alternating Optimization (TAO)

algorithm, proposed in [26] and later extended in [146, 142, 148, 143, 48, 30, 25],

to train classification and regression trees. This is a central framework used in the

remaining chapters, but for now we consider a fully supervised learning scenario

and extend it later. The TAO algorithm takes as input an initial tree and produces

a new tree with the same or smaller structure but new parameter values (weights),

which provably lower or leave unchanged the desired objective function. This can

be applied to decision trees of arbitrary complexity (axis-aligned, oblique trees,

etc.) and to any decomposable loss function. We start by deriving a generic

TAO framework (section 2.1) and provide experimental results showing practical

importance of TAO. Specifically, sections 2.2-2.3 demonstrate superiority of tree-

based models trained via TAO compared to state-of-the-art methods. We also

show that the algorithm is scalable for large datasets. Most of the notations in

this chapters are taken from chapter 1.2 and we refer a reader to it for a generic

tree learning problem setup.

18
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2.1 Overview of the TAO algorithm

We start by defining a rooted directed binary tree, i.e., each decision node has

exactly two children. We assume that the initial tree structure is given either

by generating a random tree of depth ∆ (not necessarily complete) or initializing

it from other algorithms (like CART). Nodes in a tree are indexed in set N =

{1...Nd}, where Nd is the total number of nodes. Each node (both decision and

leaf) has learnable parameters θi and the total set of parameters of a tree is

Θ = {θi}i∈N . Each decision node i has a decision function fi(x; θi): R
D → Ci,

where Ci = {lefti, righti} ⊂ N , sending an instance x to the corresponding child

of i. Although TAO can be extended to more general types of nodes, we focus on

two types of decision nodes for simplicity:

• Oblique (linear multivariate) trees which have a hyperplane based split.

That is, the corresponding decision function has a form: “go to the right

child if wT
i x+wi0 ≥ 0 and to the left child, otherwise”. Here, wi, wi0 are the

node parameters, i.e. θi = {wi, wi0}. A particular type of oblique trees are

called sparse oblique trees, which use small subset of features at each node.

As we describe later, on can obtain such trees by enforcing ℓ1 penalty on

nodes.

• Axis-aligned (univariate) trees: each decision node i has a decision func-

tion “go to the right child if xj ≥ bi and go to the left child, otherwise”, where

xj is the jth value of the input feature vector x and bi (threshold value) is

the parameter of the node i. Axis-aligned trees are the special case of the

oblique trees where wi is an indicator vector for a single feature.

Each leaf (terminal node which does not have any child) i has a predictor function

gi(x; θi): R
D → R

K that produces actual output. We shall discuss the specific

form of g(·) later in this section (see the “reduced problem over a leaf”). The

prediction of a tree T(x;Θ) for an input x is obtained by routing x from the root

to exactly one leaf and applying its predictor (gi).

We consider the problem of learning the parameters of a classification/regression
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tree of given structure by minimizing:

E(Θ) =

N
∑

n=1

L(yn,T(xn;Θ)) + α
∑

i∈N

φi(θi), (2.1)

given a training set {(xn,yn)}Nn=1 ⊂ R
D × R

K . We emphasize that we consider

T as a parametric model with trainable weights in each node (like fixing a neural

net architecture and optimizing over its parameters). The loss function L(y, z)

measures the disagreement between two vectors y (ground-truth label) and z (tree

prediction). For instance, the squared error ‖y − z‖22 is commonly used for regres-

sion problems, whereas 0/1 loss I(y 6= z) is a standard for classification (although

it is possible to use other losses, such as hinge loss, absolute deviation, etc.). The

regularization term penalizes the parameters θi of each node, where φi is e.g. a

norm such as ℓ1 (typically leads to sparsity) or ℓ2. The user-defined hyperparame-

ter α ≥ 0 controls the tradeoff between the loss and the regularization. We define

a reduced set Ri ⊂ {1, . . . , N} of node i (decision node or leaf) as the training

instances that reach i given the current tree parameters. That is, to compute the

reduced set of each of node i’s children we pass each instance xn in i’s reduced set

Ri through i’s decision function fi, and add xn to the resulting child’s reduced set.

We say that S ⊂ N is a set of non-descendant nodes if ∀i, j ∈ S neither i is a

descendant of j nor j is a descendant of i in the tree graph. For example, all nodes

at the same depth is the set of non-descendant nodes. Further, we assume that the

parameters are not shared across nodes: i, j ∈ N , i 6= j ⇒ θi ∩ θj = ∅. Next, we

briefly summarize the following three fundamental theorems for TAO which allow

us to minimize eq. (2.1) over a tree T parameters. Details and proofs can be found

in [26] or in suppl. mat. of [142, 25] (see theorems 1.1-1.3).

Separability condition This theorem states that by picking any subset of nodes

S that are non-descendants and fixing the parameters of the remaining nodes

(Θrest), the loss function in eq. (2.1) separates over parameters of the nodes in

set S. That means we can train each node in the set S independently from each

others.
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Reduced problem over a decision node Separability condition above allows

us to train each node in S independently. A single decision node optimization

can be intuitively explained using fig. 2.1. Suppose we optimize over the node

i = 2, which means we fix all parameters of a tree except θ2 and we need to only

consider the reduced set R2. That node has two children C2 = {4, 5} with the

corresponding subtrees: T4(x;Θ4) and T5(x;Θ5) for the left and right child of

node i, respectively. If node i = 2 sends an instance x to the left child, then we

compute T4(x;Θ4) and return its prediction. Note that Θ4 is fixed which means

x follows a unique path starting from node 4 down to some leaf. Then we apply

a predictor at that leaf to compute the output. The function T4(x;Θ4) does not

depend on θ2. Similar arguments hold for the right child. Therefore, the loss

term L(yn,T(xn;Θ)) can take only one of two possible values for all xn ∈ R2:

lin,4 = L(yn,T4(xn;Θ4)) ∈ R if f2(xn; θ2) = 4 (the left child is chosen) and

lin,5 = Ln(T5(xn;Θ5)) ∈ R if f2(xn; θ2) = 5 (the right child is chosen), where the

decision function for node 2 is f2: X → C2. Then, define a function lin: Ci → R

as lin(z) = L(yn,Tz(xn;Θz)), where z ∈ Ci is any child of i and Tz(·;Θz) is the

predictive function for the subtree rooted at z. The function lin gives the loss value

incurred by each of the two children of node i. Since we have only two children,

our problem reduces to encouraging a decision function f2 to send x to the “best”

child (either left or right). Suppose our best child is denoted as yin and we want

to send x to that child (ideally). In order to achieve this, define a function Lin

that satisfies Lin(yin, y) = 0 if y = yin, and Lin(yin, y) > 0 otherwise, hence it is

a weighted 0/1 loss function with “ground-truth” label yin (the best child). For

example, if Ci = {left, right} and lin(left) > lin(right), then yin = right,

Lin(right, right) = 0 and Lin(right, left) > 0. This leads us to the following

weighted binary classification problem over a single decision node i:

min
θi

Ei(θi) =
∑

n∈Ri

Lin(yin, fi(xn; θi)) + α φi(θi). (2.2)

Optimizing the weighted 0/1 loss above over a hyperplane is an NP-hard prob-

lem even for the unweighted case [102, 60] (except for axis-aligned hyperplanes,

which can be solved exactly and quickly by enumeration over the features). How-
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f2(x; θ2)

T4(x;Θ4) T5(x;Θ5)

left right

reduced
set R2

Figure 2.1: Schematic representation of the optimization over node 2 (a decision
node, with parameters θ2) in an example tree. The left and right subtrees of node
2 behave like two fixed predictor functions T4(x;Θ4) and T5(x;Θ5) which produce
an output for an input x when going left or right in node 2, respectively. Only the
training instances that reach node 2 under the current tree (the reduced set R2 of
node 2) participate in the optimization. This figure is obtained from [25].

ever, good approximate solutions can be obtained efficiently by using a convex

surrogate loss. In most of our experiments, we use the logistic loss with an ℓ1

regularizer (implemented in LIBLINEAR [43]), which generate sparse oblique trees

if case when we have linear nodes.

Reduced problem over a leaf This can be derived in a similar fashion as we

did for decision nodes. However, the problem is now much easier since leaves do

not have any children. Clearly, leaves are non-descendant w.r.t each others and

we can apply separability condition. By fixing the remaining parameters of a tree,

we can train each leaf independently. Note that x follows root-to-leaf path and

the actual prediction is given by a leaf (a predictor function gi(x; θi): R
D → R

K).

Therefore, tree output from eq. (2.1) can be replaced by the output of a leaf.

But that leaf operates only on a subset of points reaching that particular leaf (its

reduced set R). Therefore, the solution for any leaf i is the minimization of (2.1)

over its parameters θi on a reduced set Ri: it corresponds either to fitting a K-
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class classifier for classification problems or fitting a regressor for regression tasks.

As for the specific form of g(·), the following two examples are commonly used:

• Constant leaves. The predictor takes form gi(x; θi) = wi, i.e., it returns

the same value independently from the input x. During training, the solution

for the constant leaf optimization can be found exactly (usually) and its form

depends on type of problems and form of an objective. If the loss function is

the mean squared error (e.g. in regression problems), then the solution would

be taking the average of the ground truth values of the reduced set Ri in leaf

i. Similarly, for classification problems where 0/1 loss is usually used, the

solution is given by majority voting (i.e., taking the most frequently observed

y) on a reduced set Ri.

• Linear leaves The predictor takes form gi(x; θi) = Wix+wi. Additionally,

for classification problems, we need to apply a softmax function to normal-

ize the resulting vector and obtain a probability distribution over K classes.

During prediction, we need to take argmax on softmax outputs to obtain

a predicted class. During training, we solve an ℓ1-penalized linear regres-

sion (Lasso [55]). For classification problems, we solve a logistic regression

(K = 2) or linear softmax (for K > 2 classes) classifier (both with ℓ1-

regularization).

Algorithm Although the previous derivation looks complicated, the resulting

algorithm is simple to understand (see Algorithm 1): we repeatedly train one sub-

set of nodes and fix all the rest, until convergence. We can parallelize training of

nodes that are not descendants of each others (from the separability condition). In

this paper, we do this in breadth-first search (BFS) order, i.e., we update all nodes

at the same depth; one pass over the entire tree defines one TAO iteration. Up-

dating a node requires solving its reduced problem via a binary classifier (decision

node) or regressor/K-class classifier (leaf). After each iteration, the objective (2.1)

decreases or stays unchanged [26, 25]. We stop iterating when eq. (2.1) changes

little or we reach a set number of iterations. Finally, we can remove dead subtrees

from the tree, i.e., nodes receiving no training instances. This is particularly likely
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Algorithm 1: TAO algorithm to train a single decision tree.

Result: trained tree T(·;Θ)

input

training set {(xn,yn)}Nn=1;

initial tree T(·;Θ) of depth ∆ (either random or pretrained);

repeat

for depth d = 0 to ∆ do

for i ∈ nodes at depth d do

if i is a leaf then
θi ← fit a regressor/classifier (constant, linear, neural net,

etc.) on a reduced set (xn,yn) ∈ Ri;

else
generate a pseudolabel yn and weight |lleft(xn)− lright(xn)|
for each instance xn ∈ Ri;

θi ← fit a weighted binary classifier to minimize eq. (2.2);

end

end

end

update Ri for each node;

until convergence occurs or max number of iterations ;

postprocessing: remove dead or pure subtrees;

to happen with an ℓ1 regularizer on the decision nodes or leaves, which encourages

weights to become zero (a decision node with θi = 0 creates a dead subtree). We

emphasize that, unlike in traditional tree induction algorithms such as CART or

C4.5, with TAO we do not grow a tree greedily. Instead, we assume a parametric

tree with a given structure, just as when we train a neural net we choose an archi-

tecture and then optimize its parameters. That said, the final tree structure can

be smaller than the initial one (due to regularization penalty), similarly to pruning

a deep net.
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2.2 TAO trees in action: a case study on super-

vised learning

To show the full performance of TAO algorithm on standard classification and

regression problems, we conduct a set of experiments on real world data. We

denote a single decision tree trained with TAO as TAO tree and consequently

TAO forest to mean a forest of TAO trees. Out of many possible ways to ensemble

decision trees described in section 1.3.2 (e.g. bagging, boosting, etc.), we choose

a simple one: we train each TAO tree independently on a random subset of M

samples of the available training data (N instances). A particular, simple case

of this is bagging, where the subset is a bootstrap sample (M = N but sampled

with replacement; [20]). Each TAO tree was trained using Algorithm 1 and as

an initialization, we use a complete binary tree of depth ∆ and random node

parameters (each node’s weight vector has Gaussian (0,1) entries, and then we

normalize the vector to unit length). Since we train each TAO tree independently,

we can train them in parallel, just as with random forests. Although our TAO

algorithm works with axis-aligned trees, in this section we report the results on

oblique trees. These are more powerful, since they can better model correlations

between features. Regarding the leaf predictors, we use constant (denoted as TAO-

c) and linear leaves (denoted as TAO-l). We refer to the previous section for details

of each type. Empirically we found that TAO forests with linear leaves (TAO-l)

are the clear winners in both accuracy and forest size. The forest prediction (once

training is done) is the average of its trees’ predictions in case of regression. For

classification, it is obtained by majority voting (TAO-c) or by averaging class

probabilities (TAO-l).

2.2.1 Experimental setup

We implemented TAO in Python 3.x with process level parallel processing. For

training a single TAO tree, we take as initial tree a complete binary tree of given

depth (∆ in the tables) with random parameters at each node. In a forest setup,

we train each TAO tree on a 90% random sample of the training data using 20-40
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Classification

Dataset Ntrain Ntest D K

Letter 16 000 4 000 16 26
MNIST 60 000 10 000 784 10
Char74k 66 707 7 400 64 62
RCV1 15 564 518 571 47 236 53

Regression

Dataset Ntrain Ntest D K

cpu act 4 915 3 277 21 1
ailerons 7 154 6 596 40 1
CT slice 42 800 10 700 384 1
YearPred 463 715 51 630 90 1

Table 2.1: Datasets used in our experiments (left for classification and right for
the regression): number of points for training and test (Ntrain, Ntest), number of
featuresD, number of classesK (or output dimensionality for regression problems).
Companion papers [142, 30] contain more datasets and extended results.

iterations (depending on problem size). We tune its sparsity hyperparameter λ

but usually it is a small value (e.g. λ = 0.01). We use scikit-learn [100] to perform

individual node optimization described in Algorithm 1. Specifically, we use its

internally implemented version of the coordinate descent algorithm for Lasso [55],

LIBLINEAR [43] for logistic regression, SAGA [39] for the linear softmax classifier

at leaves.

We perform extensive evaluations of TAO forests across standard classification

and regression benchmarks to show effectiveness of our proposed method. Ta-

ble 2.1 summarizes the characteristics of the datasets (see details in Appendix B).

We compare TAO forests with the state-of-the-art tree ensembling algorithms:

Random Forests (RF) [19], Extra-Trees (ET) [49], AdaBoost [46] (all using the

Python scikit-learn implementation [100]); and gradient boosting [47] (using the

highly optimized XGBoost implementation [33]). We explored as best as we could

their hyperparameters, often improving over reported results in the literature (for

the same dataset and method, e.g. for RF in several datasets in [116]). In par-

ticular, we tried different choices of the number of trees T and maximum depth

∆. We do not restrict the max depth hyperparameter for RF and ET, and allow

each tree to grow fully, as is recommended for random forests [19]. But we do tune

this hyperparameter for XGBoost and AdaBoost. We also compare with pub-

lished results of some recent forest algorithms: Alternating Regression/Decision

Forests (ARF,ADF) [116, 117], Adaptive Neural Trees (ANT) [120], Shallow Neu-

ral Decision Forests (sNDF) [74], Oblique Random Forests [87], Globally Induced
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Forest (GIF) [5], Consistent Random Forest (cRF) [41], and Refined Random For-

est (rRF) [107]. Finally, we also give the result of training a single CART tree [22]

for reference. Reported errors for regression are root mean squared error (RMSE)

E =
√ 1

NK

∑N

n=1 ‖yn − ŷn‖2 and 0/1 loss E = 1
N

∑N

n=1 I(yn 6= ŷn) for classifica-

tion, where N is sample size, K is output dimension, and y and ŷ are the ground

truth and predicted values, respectively. We report the mean error (training and

test) and standard deviation over 5 independent runs. Additionally, we report the

total number of parameters (#pars.) and (estimated) FLOPS for inference, see

Appendix A for details on how we estimate them for each model.

2.2.2 Results: TAO versus state-of-the-art

Tables 2.2-2.3 show the results (sorted by decreasing test error). Our results for

ET, RF, AdaBoost and XGBoost are in overall agreement with previous works [116,

107] or sometimes better. Which of them has the highest accuracy depends on the

dataset, although (with well-set hyperparameters and especially with sufficiently

many trees) they generally are close to each other. ETs and RFs are simplest

to use in terms of hyperparameter choice and have extremely high training speed.

XGBoost and particularly AdaBoost take much longer to train. They also generate

forests with many more trees if the output is high-dimensional (K times more trees

if there are K outputs).

Next, consider the case of a single TAO tree (T = 1 in the tables). In many

cases, a single TAO tree already shows a decent performance compared with state-

of-the-art forest methods, exceeding the accuracy of CART and some forests (e.g.

on RCV1 data). This is particularly true if the TAO tree has linear leaves (TAO-l).

The accuracy margin becomes extreme in high dimensional classification problems

(e.g. RCV1) and/or some of the regression problems (e.g. SARCOS, YearPre-

dictionMSD). All these results show that TAO trains high quality decision trees

which shows the power of optimization in the tree learning problem.

Let us now consider the case of TAO forests (T > 1). TAO forests with con-

stant leaves (TAO-c) already achieve higher accuracy than most forest methods.

However, we will focus on TAO trees with linear leaves (TAO-l), which we find
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always beat TAO-c and use smaller trees. We see that TAO-l has the lowest test

error in all datasets, often by a considerable margin over the other forest methods.

Also, TAO-l forests have few, shallow trees. TAO-l forests use few trees (up to

30 in all datasets), much less than the other forest methods, which need 100s or

1000s of trees to achieve their best accuracy and yet cannot match the accuracy

of TAO-l. TAO-l forests also use shallow trees (up to 7 in most datasets), far

shallower than the other forest methods, whose depth can exceed 100. This is

because such methods use axis-aligned trees which are typically unbalanced and

grown very deep. The TAO-l trees are mostly complete but pruning of nodes does

occur during TAO training.

Finally, Tables 2.2-2.3 also report the number of parameters and inference

time. We provide a detailed explanation on how we estimate them in Appendix A.

Most forest methods use axis-aligned trees, where each decision node uses a single

input feature, while TAO forests use oblique trees in these experiments. Although

oblique trees are shallower and their forests require fewer trees, each oblique node

uses D+1 parameters (weight vector and bias at each node) while an axis-aligned

node uses just 2 (feature index and bias). However, our TAO oblique trees use

fewer than D+ 1 parameters because we run TAO with ℓ1 penalty which imposes

sparsity. Moreover, this leads to pruning of some nodes without hurting much the

model performance. As shown in the tables, when we compare the most accurate

TAO forests with the most accurate AdaBoost, XGBoost or Random forests, the

TAO forests usually have lower (or comparable) number of parameters and FLOPS.

Conclusion Random Forests (closely followed by AdaBoost and gradient boost-

ing) have long been considered as the best off-the-shelf classifiers and regressors,

due to their ease of use and high accuracy. However, these methods rely on heuris-

tic tree learning algorithms such as CART. We show that, by using the recently

proposed TAO algorithm to learn each tree instead of CART, and by ensembling

trees trained on bootstrapped or random data samples, we obtain smaller forests

with consistent, significant improvements in accuracy. This is a remarkable result

in that 1) it has immediate practical application in machine learning, computer

vision and other areas, and 2) it opens new research directions in ensemble learning
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Forest Etest (%) #pars. FLOPS T ∆

CART 12.11±0.04 5 957 (50) 1 50
TAO-c 5.25±0.20 24k 1 163 1 8
TAO-l 5.07±0.13 16k 1 194 1 5
AdaBoost 2.96±0.05 5.9M (29k) 1k 30

M
N
IS
T

RF 2.84±0.06 10M (35k) 1k 48
sNDF [74] 2.80±0.12 22M 22M 80 10
ADF [117] 2.71±0.10 (3.6M) (2 500) 100 25
TAO-c 2.31±0.08 1.2M 52k 40 8
XGBoost 2.17±0.00 540k (57k) 10k 30
rRF[107] 2.05±0.02 (160k) (2 500) 100 25
TAO-l 2.02±0.06 475k 38k 30 6

CART 13.06±0.15 2 985 (27) 1 27
TAO-c 9.59±0.31 9 904 111 1 11
TAO-l 6.60±0.33 6 449 192 1 6
XGBoost 4.00±0.00 551k (124k) 26k 30
ADF [117] 3.52±0.12 (960k) (2 500) 100 25

L
et
te
r

RF 3.44±0.09 4.2M (28k) 1k 36
rRF[107] 2.98±0.15 (180k) (2 500) 100 25
sNDF [74] 2.92±0.17 2.4M 2.4M 70 10
TAO-c 2.88±0.09 310k 3 210 30 11
AdaBoost 2.69±0.04 2.7M (20k) 1k 20
TAO-l 2.09±0.10 276k 6 310 30 7

CART 32.14±0.15 20 157 (55) 1 55
TAO-c 23.94±0.37 46k 432 1 12
TAO-l 20.82±0.31 42k 2 839 1 4

C
h
ar
74
k

XGBoost 17.04±0.00 3.3M (923k) 62k 50
AdaBoost 16.93±0.18 25M (60k) 1k 60
ADF [117] 16.67±0.21 (4M) (2 500) 100 25
RF 16.61±0.14 26M (51k) 1k 65
sNDF [74] 16.04±0.20 59M 59M 200 12
rRF[107] 15.40±0.10 (1.1M) (2 500) 100 25
TAO-c 15.19±0.18 1.5M 13k 30 12
TAO-l 15.00±0.17 1.4M 92k 30 4

CART 29.33±0.13 3 460 (150) 1 150
RF 18.78± 0.37 10M (0.2M) 1k 233
TAO-c 17.96± 0.03 3.2M 37k 1 12

R
C
V
1

AdaBoost 15.95± 0.39 4M (99k) 1k 100
TAO-l 15.73± 0.21 14k 3 357 1 4
XGBoost 13.84± 0.00 522k (151k) 53k 30
TAO-c 13.77± 0.02 84M 1.1M 30 12
TAO-l 13.29± 0.03 411k 98k 30 4

Table 2.2: Comparison on classification datasets of different forest models. We
report the test error (%, avg±stdev over 5 repeats), number of parameters and
FLOPS (numbers in parentheses are estimates), number of trees T and maximum
depth of the forest ∆.
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Forest Etest #pars. FLOPS T ∆

CART 2.88±0.00 103 9 1 9
ET 1.84±0.00 1.4M (4 068) 100 49
ARF 1.78±0.01 (36k) (750) 50 15
TAO-c 1.76±0.02 681 87 1 6
rRF 1.75±0.02 (71k) (1 000) 100 10

ai
le
ro
n
s
(E
×
10

−
4
)

RF 1.75±0.00 9M (35k) 1k 47
AdaBoost 1.75±0.00 200k (12k) 1k 15
TAO-l 1.74±0.01 447 93 1 5
XGBoost 1.72±0.00 4k (1 264) 1k 7
TAO-c 1.67±0.04 21k 2 513 30 6
TAO-l 1.66±0.04 27k 2 611 30 5

CART 3.63±0.32 9 691 25 1 25
TAO-c 2.71±0.04 498 51 1 6
ARF 2.62±0.01 (98k) 750 50 15
RF 2.60±0.01 6M (28k) 1k 37

cp
u
ac
t

TAO-l 2.58±0.02 246 41 1 5
XGBoost 2.57±0.00 294k (8 780) 1k 10
AdaBoost 2.56±0.11 0.7M (10k) 1k 10
ET 2.49±0.03 10M (38k) 1k 50
TAO-c 2.39±0.05 24k 1 590 30 7
TAO-l 2.35±0.01 8k 1 179 30 5

CART 2.71±0.06 85k 51 1 51
TAO-c 1.54±0.05 7k 1 123 1 7
AdaBoost 1.31±0.01 1M (10k) 1k 10
XGBoost 1.18±0.00 465k (10k) 1k 10

C
T

sl
ic
e

TAO-l 1.16±0.02 5k 768 1 5
ET 1.06±0.01 85M (62k) 100 82
cRF 1.00 (17M) – 1k –
RF 0.97±0.01 54M (57k) 1k 78
TAO-c 0.89±0.02 214k 31k 30 7
TAO-l 0.58±0.03 242k 25k 30 6

CART 13.41±0.11 621k 49 1 49
ET 9.31±0.00 77M (6 091) 100 73
RF 9.23±0.00 401M (52k) 1k 73
AdaBoost 9.21±0.03 24M (15k) 1k 15
TAO-c 9.11±0.05 7k 448 1 8

Y
ea
rP

re
d

TAO-l 9.08±0.03 2k 388 1 6
XGBoost 9.01±0.00 1.1M (10k) 1k 10
cRF 8.90 (184M) – 1000 –
TAO-c 8.85±0.01 246k 14k 30 9
TAO-l 8.83±0.01 148k 12k 30 7

Table 2.3: Similar to Table 2.2 but for regression datasets.
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based on better tree optimization.

2.3 Learning softmax trees with TAO

Extraordinary results from previous section on standard ML benchmarks mo-

tivated us to try TAO on large scale data. As an example, we consider extreme

classification–classification problems with thousands or more classes. Such prob-

lems naturally occur in NLP and other areas. One example are language models.

There are about 171k words in the current edition of the Oxford English Dictio-

nary, and many more if we include all forms of a word, names, technical acronyms,

etc. Another example is document classification. The Open Directory Project

(ODP) contains over 1M website categories organized in a hierarchical ontology

scheme. In this many-class setting, it is considerably difficult to learn a model that

is accurate and fast at inference time. The simplest and most widespread model

is a linear (e.g. softmax) classifier, possibly as the output layer of a neural net.

One important problem with a softmax classifier is that one must compute the

score or probability of (nearly) all classes, conditional on the input instance, in

order to determine the (top-n) predicted class. This has a cost O(DK) where D

is the input dimension of the softmax and K the number of classes, which is slow

when K and D are large. This problem also occurs with other classifiers, such as

soft decision trees. Indeed, computational constraints on the vocabulary size are

a major challenge for neural machine translation [73], for example.

We argue that having the classifier output a positive probability (however small)

for each class is slow and unnecessary when K is large, because, for any given

instance, the majority of classes should indeed have a negligible probability. A

much faster classifier is a traditional decision tree, which assigns zero probability

to all classes except the predicted one obtained from root-leaf path (in logK time

if the tree is balanced). However, such trees are known to be insufficiently accurate

even if grown very deep.

We propose a softmax tree (ST), a binary tree having sparse hyperplanes at

the decision nodes (which make hard, not soft, decisions) and a small softmax
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classifier outputting k < K classes at each leaf (a class may appear in more than

one leaf). A ST is still very fast at inference: it sends the input instance to a

single leaf via a path whose length is logarithmic on the number of leaves (for

a complete tree), and it assigns (without computing them) probability zero to

most classes (namely, all classes not in the leaf). Trading off the depth ∆ of the

tree and the number of classes k per leaf can potentially result in fast, highly

accurate classifiers. However, STs are still hard to train because they define a

nonconvex, nondifferentiable problem. We solve this by modifying Tree Alternating

Optimization (TAO), so that it can handle softmax leaves, and by using a good

initialization. We cover related literature on this topic in section 1.3.3.

2.3.1 Softmax Trees: Definition and Training

Unlike soft decision trees, which can be readily optimized via gradient-based

methods, hard decision trees pose a far more difficult optimization problem, not

just nonconvex but nondifferentiable (and NP-hard). This is also true in the con-

text of softmax trees. Traditional tree learning algorithms, such as CART [22],

are based on greedily and recursively partitioning the input space, and pruning

the resulting tree to reduce overfitting. However, as we have mentioned earlier,

they are known to produce suboptimal trees [57] and this suboptimality hits the

performance even more drastically in the extreme classification setup.

Similar to usual classification setup, we consider a K-class problem with train-

ing set {(xn, yn)}Nn=1 ⊂ R
D × {1, . . . , K} of D-dimensional instances and labels.

Let T(x;Θ) be a binary decision tree which produces a prediction for each input

x by routing x from the root to exactly one leaf and applying a predictor function

at that leaf. Each node (both decision and a leaf) has learnable parameters θi and

the total set of parameters of a tree is Θ = {θi}i∈N , where N is the set of nodes.

Each decision node i has a decision function fi(x; θi): R
D → {lefti, righti} ⊂ N ,

sending instance x to the corresponding child of node i, and each leaf has a pre-

dictor function gi(x; θi): R
D → {1, . . . , K} that produces the actual output. In a

softmax tree (ST):

• Each decision function uses a (sparse) hyperplane (oblique tree): “go to the
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right child if wT
i x + wi0 ≥ 0, else go to the left child”, with parameters

θi = {wi, wi0}.

• Each leaf predictor is a k-class linear softmax : gi(x; θi) = σ(Wix + wi),

where σ(·) is the softmax function and Wi ∈ R
k×D, wi ∈ R

k, where k ≤ K

and usually k ≪ K. This is unlike [26], which used a constant-label predictor.

We optimize the following objective function:

E(Θ) =
N
∑

n=1

L(yn,T(xn;Θ)) + α
∑

i∈N

‖θi‖1 (2.3)

where L(·, ·) is the cross-entropy, and the ℓ1 penalty over the weight vectors (of

both decision nodes and leaves) promotes sparsity, via a hyperparameter α ≥
0. The remaining part closely follows the original TAO algorithm described in

the beginning of this chapter, i.e., separability condition applies, decision node

optimization will be the same. However, optimizing over leaves now changes due

to handling the softmax classifier with k ≪ K classes. In our STs, gi for leaves

is a k-class softmax classifier with an ℓ1 sparsity penalty. We first estimate the

k classes (out of K possible classes) as the k most populous classes in Ri. Then

we train the softmax, which is a convex problem. We solve it using SAG [115].

Algorithm 2 shows the modified pseudocode for training softmax tree using TAO.

Dealing with zero probabilities In our STs, each leaf operates on k classes. If

k = K, each possible class receives a positive probability, but if k ≪ K then many

(K − k) classes receive exactly zero probability. This is necessary to achieve the

fast prediction we seek, but it results in an infinite cross-entropy value whenever

an instance with ground-truth class y is routed to a leaf that does not contain y.

This causes no issue in the reduced problem over a leaf (the softmax uses only the

top-k classes in that leaf), but it does cause an issue in the reduced problem over

a decision node. Here, we have to solve a weighted 0/1 loss binary classification

problem where the weights are obtained by evaluating the prediction’s loss from

the left and right subtrees for each instance in the node, and some of those weights

can be infinity. To mitigate these issues and make sure learning succeeds, we tried

the following approaches:
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Algorithm 2: Softmax tree (ST) training.

Result: trained tree T(·;Θ)

input

training set {(xn, yn)}Nn=1;

initial tree T(·;Θ) of depth ∆;

repeat

for depth d = ∆ downto 0 do

for i ∈ nodes at depth d do

if i is a leaf then

Ri ← instances of the most populous k classes in Ri;

θi ← fit a linear classifier on Ri;

else

generate pseudolabels yn for each point n ∈ Ri;

θi ← fit a weighted binary classifier to minimize eq. (2.2);

end

end

end

Update the reduced set Ri for each node;

until max number of iterations;

postprocessing: remove dead or pure subtrees;

1. Remove from the reduced problem any instance with loss=∞ (in either the

left or right subtree). This performs very badly.

2. Replace loss=∞ by loss=β, where β is typically a large value (e.g. 100, 107).

This is the option that works best in a number of datasets we have tried

(see [146]), but it requires an extra hyperparameter β. This is essentially the

same as using a leaf model which predicts class probabilities with a softmax

for its k classes and a constant, small value exp(−β) for all other K − k

classes.

3. Use the 0/1 loss instead of the cross-entropy in the overall objective function

of eq. (2.3). This avoids the infinity issue altogether, since the pseudolabels’
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weight is either 0 or 1 (as in [26]). However, the reduced problem over a leaf

must now optimize the 0/1 loss (which is NP-hard) rather than the cross-

entropy; we approximate this by using the cross-entropy as surrogate loss, so

we still learn a softmax as usual. This requires no additional hyperparameter

and does quite well. It is our default option.

2.3.2 Obtaining an initial tree

While TAO monotonically decreases the objective function, it still converges

to a local optimum. For the constant-label leaf oblique trees of [26], which were

applied to problems with few classes, using as initial tree a complete tree of depth

∆ with random parameters worked well (we call this “random initialization”).

However, with many classes we have observed that the following greedy hierarchical

clustering initialization works quite better. Assume a complete tree of depth ∆

having L = 2∆ leaves (although the idea carries over to any binary tree structure).

The following simple algorithm is guaranteed to assign classes to leaves in a way

that respects the ST structure and keeps similar classes near each other in the tree.

First, we cluster the training instances into L clusters using k-means. The L

clusters will be assigned one-to-one to the L leaves by a greedy hierarchical clus-

tering, as follows. We greedily merge pairs of clusters to achieve L
2
“superclusters”.

That is, we first merge the two closest clusters into one supercluster (which be-

comes their parent node). Then, we merge the two closest clusters of the remaining

clusters, etc. Note that, unlike in regular hierarchical agglomerative clustering, the

resulting supercluster is not considered for merging immediately, but rather each

level is considered separately, so that we obtain a tree with a desired structure

(balanced). We define the distance between two (super)clusters as the Euclidean

distance between their means. We repeat the greedy merging into L
4
, L

8
, etc. super-

clusters until we reach a single supercluster containing all training instances (the

root of the tree). This gives the assignment of clusters to leaves of our tree. (A

faster version of this is obtained by first replacing all the training instances within

each class with a “class prototype”, weighted by the number of instances, and then

proceeding as above to find a greedy hierarchical clustering of these K prototypes.)
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Now that each instance is assigned to one leaf, the first TAO iteration can start,

in reverse BFS order.

The idea is that the tree leaves induce a hierarchical partition of the input space

into polytopes, hence 1) the training instances within one leaf’s polytope should

generally be closer to each other than to instances in other polytopes, and 2) this

remains true as clusters are merged according to the tree (i.e., the polytopes of

two sibling leaves will be near each other, etc.).

2.3.3 Experiments

We demonstrate the performance of our method on two popular NLP tasks:

(a) large scale text classification, and (b) language modeling. Experiments suggest

that our resulting softmax trees outperform simple and advanced baselines either

in accuracy (and yet very fast) or in prediction time (and yet showing competitive

accuracy); or quite often in both of these indicators. Moreover, the resulting models

are compact in terms of memory requirements.

We initialize our softmax trees (ST) using a “clustering-based” method de-

scribed in section 2.3.2 (unless otherwise specified). The sparsity penalty (α) set

according to the cross-validation (10% of the training data). Increasing the number

of TAO iterations results to a better performance but at a cost of having slower

training time. Maximum number of classes (k) at each leaf is another tunable

hyperparameter and we report it for each performed experiment (e.g. ST(k=50)).

As for the baselines, we use scikit-learn’s [100] implementation of the one-

versus-all and softmax linear classifiers. Additionally, we compare our results

with more recent baselines which show state-of-the-art performance on various

extreme classification problems: LOMTree [34], RecallTree [37], (π, κ)-DS [69] and

MACH [86]. Where applicable, we use the available implementations of the men-

tioned methods. Finally, we have implemented hierarchical softmax as a tree-based

baseline for language modeling tasks.

We report the top-1 and top-5 errors, maximum depth (∆), mean inference

time per test sample (in ms) and uncompressed model sizes (in GB). We average

the errors over 3 independent runs for softmax trees, whereas the best performance
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Figure 2.2: Top-1 errors and avg. inference time tradeoff of the ST for various
settings of ∆ and k on the ODP dataset.

is reported for other baselines. The inference time is calculated in a single CPU

without parallel processing using the following methodology: we sequentially pass

each test sample to the trained model and measure its prediction time. Then we

average the results over all test set. Also, we report the storage requirement for

each model (uncompressed and stored in sparse format if applicable).

2.3.4 Results: text classification

We perform the first set of experiments on two document categorization bench-

marks with large number of classes: ODP–website categorization problem which

has over 105k classes and WIKI–Small (with > 36k classes). Input feature vector

for each document is normalized bag-of-words representation containing around

400k dimensions. See [146] for details and additional benchmarks.

Table 2.4 shows that the STs consistently outperform other baselines and by

a considerable margin, showing outstanding performance on these benchmarks.

Moreover, they achieve faster inference time compared to most of the baselines

(e.g. one-vs-all, MACH) and shows a similar speed as of RecallTree and LOMTree

(i.e., other tree-based methods).

Additionally, fig. 2.2 shows a tradeoff between error-vs-depth and inference time-

vs-depth. It also examines different values for k. In general, increasing k results to

better models in terms of error. On the other hand, it increases the inference time

(right figure), although the difference is typically negligible. Finally, the results
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Method top-1 ∆ inf.(ms) size(GB)

RecallTree 92.64 15 0.97 0.8
one-vs-all 85.71 0 10.70 53.5
MACH 84.80 – 252.64 1.3
(π, κ)-DS 78.02 – 10.33 0.01

W
IK

I–
S
m
al
l

ST(k = 100) 77.26 7 0.33 0.03
ST(k = 300) 76.86 7 0.49 0.04
ST(k = 150) 76.33 8 0.57 0.05
ST+(k = 150) 75.65 8 0.52 0.05

RecallTree 94.64 6 8.42 3.4
LOMTree (93.46) (17) (0.26) –
one-vs-all 89.22 0 1317.58 155.7
(π, κ)-DS 86.31 – 36.41 1.0

O
D
P

MACH 84.55 – 684.04 1.2
ST(k = 300) 83.78 9 9.59 0.1
ST+(k = 300) 81.84 9 9.87 0.1

Table 2.4: Results on text classification datasets. We report the top-1 test error,
maximum depth (∆), avg. inference time per test sample (in ms) and uncompressed
model sizes (in GB). ST(k = x) indicates our method which uses at most k classes
at each leaf. The results in brackets are taken from the corresponding papers. “+”
shows the results of using cross-entropy loss with β = 100.

suggest that the Depth (∆) should be sufficiently large but overfitting may occur

passing a certain point (e.g. middle plot).

Model sizes Table 2.4 reports another critical aspect–compactness of our mod-

els. Just as our STs are very fast, they also generate extremely compact models

compared to baselines (at least 10x gain). This is due to the ℓ1 penalty applied

at each node, which leads to sparse weights. Moreover, we observe that the best

performance for STs is typically achieved with shallow trees (see ∆) which also

helps to reduce the model size.

2.3.5 Results: language modeling

We conduct experiments on PTB dataset which has been extensively used to

study language modeling problems. Dataset description as well as our preprocess-
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Method top-1/top-5 PPL(% covered) ∆ inf.(ms)

HSM-approx 92.2 / 86.5 575 (100%) 18 0.184
HSM 91.1 / 81.1 575 (100%) 18 0.421
one-vs-all 87.5 / 80.2 220 (100%) 0 0.402
softmax 86.9 / 79.6 217 (100%) 0 0.467
ST(k=50) 86.5 / 72.5 17 (44%) 8 0.058
ST(k=100) 86.5 / 71.5 27 (51%) 7 0.058
ST(k=200) 86.4 / 70.6 45 (58%) 6 0.053
ST(k=400) 86.4 / 69.7 71 (67%) 5 0.064
ST(k=800) 86.4 / 68.4 117 (77%) 4 0.066
ST*(k=800) 86.4 / 68.4 427 (100%) 4 0.066

Table 2.5: Like Table 2.4 but on PTB–language modeling task. We also report
the test Perplexity (with percentage of the covered points) and top-5 error. “*”
indicates that smoothing was applied to replace 0 probabilities with some small
epsilon and re-normalize the output.

ing steps can found in [146] and in Appendix B. As for the baselines, we use the

same one-vs-all classifier described earlier and Hierarchical Softmax (HSM) model

(we closely follow the setup from [88]). Also, we have implemented “HSM-approx”

which chooses a child with the highest probability at each split (i.e., it achieves a

faster prediction time). We use the random initialization for ST. As for the HSM,

we use our own implementation in Pytorch (see details in [146]).

We report the train/test Perplexities (PPL), which is commonly done for such

tasks: PPL = exp(− 1
N

∑N

i=1 logPr(yi|xi)), where N is the sample size (train or

test), yi and xi are ground truth label and input feature vector of the instance

i, respectively. Most of the baselines described in the previous section (especially

tree-based methods) do not produce class probabilities and they can not be directly

applied to solve the language modeling problem, so we omit their comparison. For

ST, we calculate Pr(yi|xi) by routing an instance xi to the corresponding leaf of a

tree and taking softmax on the output produced by that leaf. If yi (correct class)

is not presented in that leaf (it may happen since a leaf stores k < K classes) then

we do not include it to the calculation. Therefore, we provide the total number

of points with non-zero probability predictions. Note that the fact that our STs

output exactly zero probability for many classes is by design and results in its
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Method top-1/top-5 PPL(% covered) ∆ inf.(ms)

HSM-appox 78.3 / 64.1 184 (100%) 18 0.097
HSM 77.7 / 63.1 184 (100%) 18 0.372
softmax 74.3 / 54.8 96 (100%) 0 0.346
ST(k=50) 75.2 / 57.3 9 (59%) 8 0.046
ST(k=100) 75.0 / 56.8 13 (64%) 7 0.045
ST(k=200) 74.9 / 56.2 18 (70%) 6 0.067
ST(k=400) 74.7 / 55.9 24 (76%) 5 0.066
ST(k=800) 74.5 / 55.5 33 (81%) 4 0.069
ST*(k=800) 74.5 / 55.5 145 (100%) 4 0.069

Table 2.6: Like Table 2.5, but models were trained on the output of the recurrent
neural net (LSTM).

inference speed. Also note that a softmax classifier will happily assign a positive

probability to a class whose region is actually empty (i.e., no input x ∈ R
D ever

results in that class winning). That said, we also provide the results of applying a

smoothing technique [42, section 6.2] to ensure positive probabilities for all classes,

without any increase in inference time (denoted by “*” in tables). Specifically, we

assign some small ǫ to all instances with zero probability and renormalize the

output probabilities. This requires additional hyperparameter ǫ which we tune

using cross-validation.

Table 2.5 summarizes our results. First of all, one can notice that both versions

of HSM perform worse compared to one-vs-all (both error and PPL) which coin-

cides with previous findings [91]. As for the ST, it shows a decent test error (both

top-1/top-5) and the fastest inference time than the other baselines. Regarding the

perplexity score, our method produces exactly zero probability for some instances

which makes overall PPL unbounded (i.e., infinity). However, if we discard such

cases and focus on a subset of data for which probability estimate is non-zero (see

“% covered” in the table), then it achieves a significantly low PPL. Moreover, it is

clear from the Table 2.5 that ST covers majority of the points and such coverage

increases as we increase k. As for the results using smoothing (denoted by “*”),

the PPL score is still much lower compared to HSM but higher than one-vs-all.

This logically makes sense since instances with zero probability increase PPL score



41

Method WIKI–Small ODP

one-vs-all >7d >7d
LOMTree – (36m)
RecallTree 53m 113m
MACH 1445m 2301m
ST 1033m 2880m

Table 2.7: Training times in minutes (m) or days (d) for the datasets in Table 2.4.
For ST, we report the training times for the best performing architecture (in terms
of test error). For LOMTree, we report the results from [37] when applicable.

substantially.

Neural language modeling

Modern neural nets are well known to achieve the state-of-the-art performance

in language modeling problems. As a comparison, simple RNNs can easily reach

PPL = 101 on the same problem [89] from the previous section. Therefore, we

combine our softmax trees with the output of LSTM and show that it achieves

a comparable performance with faster inference time. Specifically, we use our

Pytorch implementation (see details in [146]) of the RNN model for the word-level

language modeling on the same PTB dataset with all 10k unique words as the

vocabulary. Table 2.6 summarizes our findings. The neural net model achieves

96.33 perplexity score on a test set using softmax classifier as the last layer. Once

training is done, we extract the last output of the LSTM layer and use it as input to

the ST (i.e., input is a vector ∈ R
150). In other words, ST is not trained in end-to-

end fashion but sequentially. Despite this, our method shows a similar performance

compared to the plain softmax in terms of train/test errors and consistently faster

during inference time (about 5.7 times). Regarding the perplexity score, as in the

above case, we cover majority of the data points for which the PPL is significantly

low compared to the baseline.
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2.3.6 Training time

Table 2.7 gives representative runtimes for several datasets. We train all meth-

ods using at most 16 parallel threads. In general, all tree-based and hashing-based

methods are faster to train compared to one-vs-all. For smaller datasets, training

softmax trees is as expensive as RecallTree, but faster than MACH. For larger

datasets, ST requires more time to find a good solution. Even in that case, it

shows a comparable runtime against MACH. Overall, the runtime of ST is rea-

sonable and more than justified by the fast inference time and low test error it

achieves.



Chapter 3

Semi-Supervised Learning with

Decision Trees

Tree Alternating Optimization (TAO) algorithm described in the previous chap-

ter shows remarkable performance on supervised learning tasks, such as classifica-

tion and regression. However, extending TAO trees beyond these problems meet

certain challenges, which we study in this chapter. Actually, we partially discussed

some of the issues in section 1.3.4 for generic tree-based models and TAO trees

naturally inherit all those issues. In this chapter, we discuss the first example of

the application where manifold regularization appears: semi supervised learning.

Semi-supervised learning (SSL) is an important subfield of machine learning

which has received a lot of attention in recent years given today’s growing amount

of data and widespread deployment of machine learning systems. One of the major

reasons is that SSL is applicable when labels are scarce. This is in contrast to the

traditional fully supervised learning, which requires access to a large amount of

high-quality labeled data. However, obtaining such samples is often costly, time-

consuming and sometimes even impractical. Therefore, SSL methods have received

much praise in the machine learning literature [153] and they are widely used in

many applications. A common strategy in SSL is to assume that similar instances

have similar predictions, which is commonly incorporated into an objective as a

graph prior or manifold regularization (e.g. graph Laplacian).

As we have mentioned earlier, there are several challenges with training tree-

43
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ground truth tree on all data tree on labeled data LapTAO (ours)
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Figure 3.1: Binary classification on 2D. Plot 1 shows the original data and corre-
sponding class labels. Cross markers (×, six in total) indicate the labeled points
that we provide to any given SSL algorithm. “Tree on all data” shows the decision
boundary obtained by using all available labeled data, whereas plot 3 uses only six
labeled points to train a tree. Plot 4 shows the result of our SSL framework. All
trees are oblique of depth ∆ = 2.

based models in semi-supervised learning setup. One problem is due to difficulty

of the optimization problem, which involves non-differentiable and non-convex ob-

jective. Another challenge is, like many non-linear methods, decision trees are well

known to overfit for small-sized (labeled) data, which is the case in SSL. As an

illustration, consider fig. 3.1, that shows a synthetic binary classification problem

in 2D. An oblique tree achieves a certain good performance when it is provided the

entire population of labeled data. But the error significantly increases if a tree is

trained on six labeled instances only (plot 3). Whereas the benefit is evident when

we provide all data (six labeled and the rest are unlabeled) and properly optimize

a tree within SSL framework.

In this chapter, we propose a novel SSL framework that is specifically designed

for training discrete structured models (e.g. decision trees). In our proposed ap-

proach, we first state the objective, which consists of a supervised loss (for the

labeled data only) and a graph Laplacian regularization (also known as manifold

regularization [6]). The resulting optimization problem is long considered to be

hard to solve since trees define a non-differentiable, non-convex mapping. By re-

formulating the problem as a constrained optimization, we derive an efficient and
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scalable iterative algorithm (section 3.1) which requires solving two simpler prob-

lems at each step: a sparse linear system and a supervised tree learning problem.

For the latter, we use the TAO algorithm, which is crucial for the success of our

approach. Moreover, for a special case where the tree structure as well as the pa-

rameters in each decision node (not leaves) are fixed, we derive the exact solution

given by another linear system (section 3.1.2). Experimental results (section 3.2)

show the algorithm is able to learn accurate and interpretable decision trees even

with very few labeled instances.

3.1 LapTAO: semi-supervised learning

framework for decision trees

We are given the dataset D = Dl ∪ Du, where Dl = {xn, yn}ln=1 ⊂ R
D × R is

the labeled portion of the data, with l points, and Du = {xn}Nn=l+1 ⊂ R
D is the

unlabeled portion, with N − l points. Then our goal is to minimize the following

regularized objective:

E(Θ) =
l

∑

n=1

(T (xn;Θ)− yn)
2 + α φ(Θ) + γ

N
∑

n,m=1

wnm(T (xn;Θ)− T (xm;Θ))2.

(3.1)

For simplicity, we consider a single real-valued output (e.g. as in regression) and

thus the ground truth label yn is scalar. However, we extend this assumption in

the next section. Here, wnm are the weights in the affinity (similarity) matrix

based on a graph on all the data points D, usually a nearest-neighbor graph;

T : RD → R is the tree predictive mapping, with parameters Θ = {θi}nodes; φ(·) is
a regularization penalty, such as ‖·‖1; and γ,α are regularization hyperparameters.

Rather than using a greedy recursive partitioning procedure (such as CART [22]

or C5.0 [106]), which does not optimize any loss function, we consider T as a

parametric model with trainable weights in each node (like fixing a neural net

architecture and optimizing over its parameters). If T was differentiable, one could

optimize (3.1) via gradient-based methods, as can be done for neural nets [134].

Similarly, the solution is relatively straightforward to obtain if problem (3.1) is



46

convex [6]. However, solving problem (3.1) is non-trivial with a tree which defines

a non-differentiable and non-convex mapping. Instead, we apply the method of

auxiliary coordinates [28, 29], a generic method for optimizing nested systems.

We proceed as follows by reformulating problem (3.1) in an equivalent form.

We introduce a new auxiliary variable zn ∈ R for each training instance n and

consider the constrained problem:

min
z1,...,zN ,Θ

l
∑

n=1

(zn − yn)
2 + α φ(Θ) + γ

N
∑

n,m=1

wnm(zn − zm)
2 (3.2)

s.t. zn = T (xn;Θ) n = 1, . . . , N. (3.3)

Obviously, by putting the constraints (3.3) back into eq. (3.2), we end up with the

same objective as in (3.1), so these two problems are equivalent. Let us denote

y = [y1, y2, . . . , yl, 0, 0, . . . ]
T ∈ R

N the augmented ground truth vector, i.e., we

put zeros in the unlabeled portion of the data. Similarly, introduce a diagonal

matrix J = diag(1, . . . , 1, 0, . . . , 0) ∈ R
N×N with the first l diagonal entries equal

to 1 and the rest to 0. Also, let the graph Laplacian be L = D −W with a

diagonal matrix D ∈ R
N×N (the degree matrix) having entries dnn =

∑N

m=1 wnm,

and let W = (wnm) ∈ R
N×N be the affinity matrix. Finally, call z = [z1, . . . , zN ]

T

and t(X;Θ) = [T (x1;Θ), . . . , T (xN ;Θ)]T , where X = (x1, . . . ,xN). Then we can

rewrite eq. (3.2)-(3.3) as follows:

min
z,Θ

(z− y)TJ (z− y) + α φ(Θ) + γ zTL z s.t. z = t(X;Θ). (3.4)

Now we solve this using the augmented Lagrangian method [96]. This defines a

new, unconstrained optimization problem:

min
z,Θ

(z−y)TJ (z−y)+α φ(Θ)+γ zTL z−λT (z−t(X;Θ))+µ‖z− t(X;Θ)‖2 (3.5)

where λ ∈ R
N are the estimates of the Lagrange multipliers. Optimizing this for

each µ > 0 produces a sequence of (zµ, tµ(X;Θ)) and, as µ → ∞, we gradually

force the minimizer to be in the feasible set of the constrained problem. Finally,

in order to minimize (3.5) over z and t(X;Θ) for fixed µ, we apply alternating

optimization over z and Θ:
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• Label-step (optimizing over z given fixed t(X;Θ)). The objective in eq. (3.5)

is a quadratic function and a minimizer is obtained by solving the linear system:

min
z

(z− y)TJ (z− y) + γ zTL z− λT (z− t(X;Θ)) + µ‖z− t(X;Θ)‖2 ⇒
∂L
∂z

= J(z− y) + γLz− 1

2
λ+ µ(z− t(X;Θ)) and

∂2L
∂z∂zT

= A = J+ µI+ γL⇒

Az = Jy + µt(X;Θ) +
1

2
λ

(3.6)

where A is a positive definite matrix, because: µ, γ > 0, L is positive semidefi-

nite [6], I is identity and J is the diagonal matrix with first l entries equal 1 and

the rest are 0. Therefore, xTAx = xTJx+µxT I x+ γxTLx > 0 for all x ∈ R
N .

This means that our problem is strictly convex with a unique solution given by

the linear system shown above. Moreover, A is a sparse matrix if the graph

Laplacian L is sparse, which is the case in practice if we construct W by using a

nearest neighbors graph. This allows us to solve a large scale linear system in an

efficient way (e.g. by caching a matrix factorization as described in section 3.1.1

or using the conjugate gradient method). Intuitively, the label-step can be in-

terpreted as approximating the labels (for Du) using the graph Laplacian and

predictions obtained from the current tree (i.e., label smoothing).

• Tree-step (optimizing over Θ given fixed z). Problem (3.5) reduces to a regres-

sion fit of a tree:

min
Θ

µ‖z− t(X;Θ)‖2 + α φ(Θ)− λT (z− t(X;Θ))⇔

min
Θ

∥

∥

∥

∥

(

z− 1

2µ
λ
)

− t(X;Θ)

∥

∥

∥

∥

2

+
α

µ
φ(Θ).

(3.7)

Note that here we use (z− 1
2µ
λ) as “ground-truth” labels (not yn, which is not

defined for Du anyway). We solve this problem using the TAO algorithm, which

we discussed in the previous chapter. Intuitively, this step can be understood as

fitting a tree with the current estimates of the labels.

As we later discuss in experiments section, we pick a sparse oblique tree with

constant leaves as our main model. This is purely for demonstration purposes
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since this method is quite generic. The motivation behind this choice is twofold.

First, traditional axis-aligned trees are very restrictive since each split uses a

single feature, which neglects interactions or correlations between features. In-

deed, empirical results show oblique trees achieve far better performance [148].

Besides, thanks to the sparsity, only few features are active at each split, and

nodes in the initial tree can become redundant and be pruned if their weight wi

becomes zero [26]. This, together with the fact that oblique trees typically have

small depth, makes the final model more interpretable.

Finally, the step over Lagrange multipliers is done by the update λ← λ − µ(z−
t(X;Θ)). In summary, our algorithm alternates between solving a linear system

and training a tree. After each (label,tree)-step, we increase the penalty parameter

µ, we update λ and we keep iterating until approximate convergence or other stop-

ping criterion (e.g. maximum number of iterations reached). We call our algorithm

LapTAO and provide the pseudocode below in Algorithm 3.2.

3.1.1 Practicalities of LapTAO

Algorithm 3.2 provides a general picture on how our proposed semi-supervised

learning framework works. However, there are several implementation details that

are worth mentioning, which we discuss below.

Initialization for LapTAO To start our iterative algorithm, we need to obtain

initial solutions (z0, t0) for eq. (3.5) when µ → 0+. This is straightforward to

achieve for z0, as it involves solving the same linear system as in eq. (3.6) but

with µ = 0 and λ = 0: (J + γL)z = Jy. This can be considered as a non-

parametric smoothing of the labels obtained by propagating (diffusing) the ground-

truth labels over all points (labeled and unlabeled) through the graph Laplacian.

Although these smoothed labels are not optimal in problem (3.1), which requires

optimizing them jointly with the tree, they do provide a good initialization, and

it is convenient to solve the linear system exactly for µ = 0. After that, we fit a

tree using z0 as ground-truth labels (tree-step). Recall that TAO requires an initial
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input labeled set Dl = {xn, yn}ln=1 and unlabeled set Du = {xn}Nn=l+1;

penalty parameters: α, γ; µ schedule: µ0, . . . , µmax;

graph Laplacian L = D−W;

λ← 0 (initialize Lagrange multipliers);

z0 ← solve the linear system in eq. (3.6) with µ = 0;

t(·;Θ)← fit a tree to ({xn}Nn=1, z0) (algorithm 1);

for µ = µ0 < µ1 < µ2 < · · · < µmax;

repeat

label-step: z← solve the linear system in eq. (3.6) given fixed t(·;Θ);

tree-step: t(·;Θ)← fit a tree to ({xn}Nn=1, z− 1
2µ
λ) given fixed z

using algorithm 1 (see eq. (3.7));

Lagrange multipliers step: λ← λ− µ(z− t(·;Θ));

until stop

end for

Post-processing (see section 3.1.2)

return t(·;Θ)

Figure 3.2: Pseudocode for LapTAO. “Stop” for inner loop occurs when (z,t(·;Θ)
) converge (ideally). However, in practice, we use a fixed number of iterations (e.g.
1 in most experiments).

tree, which, for instance, can be obtained by generating a complete tree of depth ∆

(a hyperparameter) with a Gaussian random weight vector at each decision node.

Hyperparameters of LapTAO The hyperparameters are γ for the graph prior,

µ schedule for the augmented Lagrangian, α (sparsity) and ∆ (depth) for the tree.

They can be selected by cross-validation.

Extension to multioutput regression and classification We can extend

LapTAO for multiple outputs in a straightforward way: the label-step solves the

linear system (3.6) for each dimension separately and the tree-step applies TAO

as usual, as it can handle a vector-valued output. For classification, we use a

one-hot encoding of the labels and consider the problem as a regression task, as is
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commonly done in the decision tree literature [57] (especially for boosted trees). It

is possible to extend our framework for other losses (e.g. hinge, logistic) that may

work better for classification. This requires certain changes in the label-step and

we will explore it in our future works.

Extension to models other than trees Although our focus in this paper are

decision trees, the semi-supervised learning optimization algorithm we propose is

perfectly general. The model (T (x;Θ)) appears in the algorithm in the tree-step,

with the form of a regression problem having the smoothed labels as ground-truth.

Obviously, we can use other regression models, such as random forests, gradient

boosted trees, neural networks, etc. The motivation to use our approach was

the fact that trees are not differentiable, so one cannot optimize problem (3.1) by

gradient-based methods. But our approach has another, computational advantage:

by separating terms through the auxiliary variables z, the quadratic-cost term is

confined to the label-step. For large datasets, this is a sparse linear system, for

which efficient algorithms exist. Hence, the complexity associated with the model

(tree) is linear on the dataset size (in the tree-step). This is much faster than

having to deal directly with the quadratic term and the model, as in eq. (3.1),

whether for trees or other models.

Practical reasons of using TAO in tree-step Potentially, one could apply

any tree fitting algorithm to solve the tree-step in LapTAO, such as CART [22],

C5.0 [106], OC1 [95], etc. But there are several important considerations. Firstly,

from an optimization point of view, it is known that alternating optimization is

most effective when the step over each block is (ideally) exact. This is compu-

tationally achievable for the label-step, which involves a linear system. However,

training a tree optimally even in the simplest case (axes-aligned with binary in-

puts and output) is NP-hard [62]. Therefore, we need an approximate but good

solution. Most traditional tree learning algorithms, based on greedy recursive par-

titioning (such as CART), are highly suboptimal [57] and do not even consider

any specific loss function over trees. In contrast, the TAO algorithm fits decision

trees by monotonically decreasing a well-defined and very general loss function and
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regularization over a well-defined parametric space of trees, given an initial tree

structure and parameter values. This makes it also possible to use warm-start in

the tree-step, i.e., to continue improving the tree from the previous iteration—

which greedy recursive partitioning cannot do, as it constructs a new tree from

scratch every time. Warm-start is essential to speed up the optimization and to

achieve stability in the results (CART-type algorithms are notoriously unstable

in that small changes in the training set can result in drastically different tree

structures and parameters [57]). A further, important advantage of TAO is that

it can learn trees of quite general types, such as oblique trees, which are far more

powerful that the traditional axes-aligned trees.

Accelerating the label-step in LapTAO: caching the SVD Although Con-

jugate Gradients (CG) method is a reasonable choice to solve the linear system for

large scale problems, there is a way to accelerate the label-step for small-medium

sized problems. The crucial observation is that the coefficient matrix A ∈ R
N×N

is changed by adding µI at each iteration of the Algorithm 3.2 and the remaining

part is static (J + γL). This naturally leads to a question: can we improve the

computation of A−1 from O(N3) to O(N2) to solve the linear system (3.6)? De-

note the static part of the matrix as B = J + γL. Moreover, B is a symmetric

matrix since L is symmetric and J is diagonal. Therefore, we can calculate its

eigendecomposition B = QΛQT , where Q is an orthogonal matrix. One can de-

rive the inverse via Sherman-Morrison-Woodbury formula. However, a more direct

and easier derivation is:

A−1 = (µI+B)−1 = (µI+QΛQT )−1 = (Q(µI+Λ)QT )−1 = Q(µI+Λ)−1QT (3.8)

where µI+QΛQT = Q(µI+Λ)QT comes from the orthogonality of Q: QQT = I.

Notice that µI + Λ is a diagonal matrix and computing its inverse takes O(N).

Therefore, calculating eq. (3.8) costs O(N2). The only costly part is computing

the eigendecomposition (for B) which still requires O(N3) time (and destroys the

sparsity) but we do it only once before starting our algorithm. In practice, we

found this method to be useful only when N is a few thousands at most.
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3.1.2 Special case: exact solution when the tree structure

is fixed

Problem (3.1) is hard to solve over the entire space of decision trees, but we

can obtain an exact solution if the structure and decision node parameters are

fixed, since then the problem reduces to solving a linear system. In this case,

the only parameters to optimize are in the leaves. Assuming each leaf outputs a

constant value, we can reformulate the tree prediction as a sum of basis functions

T (x) =
∑m

i=1 ci bi(x), where m is the number of leaves, ci ∈ R is leaf i’s label

and bi(·) ∈ {0, 1} is 1 only if x ends up in leaf i. Now we can rewrite (3.1)

as the following minimization problem over the parameters of all the leaves c =

(c1, . . . , cm)
T :

E(c) =

l
∑

n=1

( m
∑

i=1

ci bi(xn)− yn

)2

+ γ

N
∑

n,m=1

wnm

( m
∑

i=1

ci (bi(xn)− bi(xm))

)2

(3.9)

= (Bc− y)TJ (Bc− y) + γ cTBTLBc (3.10)

where B = (bi(xn)) ∈ RN×m can be precomputed since we fix the tree structure

and parameters in all decision nodes. Minimizing this over c yields the following

linear system:

Ac = BTJy (3.11)

where A = BTJB+ γ BTLB is a matrix of m×m. This is very fast to solve since

oblique trees are quite shallow, so the number of leaves m is not large (at most

1 000 in our experiments), and this computation does not depend on dataset size.

Once LapTAO is finished, we apply the above procedure as a post-processing to

the final tree.

3.1.3 Computational complexity of LapTAO

At the top level, LapTAO runs a fixed number of iterations (depending on the

µ schedule, typically less than 20). Each iteration has to solve (approximately)

two subproblems:
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• Label-step: this is a large, sparse linear system of N ×N (where N is the sam-

ple size). We solve it approximately with conjugate gradients (CG), initialized

by the previous iterate (warm-start). Each CG iteration is O(Nk) where k is

the average number of neighbors in the graph, and we run just a few CG itera-

tions. The total runtime of the label step is less than 30 seconds in the largest

experiment we conducted (1M points). Convergence can be further improved

via preconditioning (e.g. Jacobi). We can also solve the linear system exactly in

O(N2) by caching its SVD, but this is only convenient if N is a few thousands

at most.

• Tree-step: fitting an oblique tree with TAO to the N training points. Although

the TAO algorithm is applicable to a large spectrum of decision tree types, here

we pick a sparse oblique tree with constant leaves as our main model. Each

iteration of TAO updates each decision node and leaf node. For each leaf, we

compute the average of the labels of its reduced set (training points reaching it),

so this is O(N) over all the leaves. For each decision node, we train a logistic

regression on its reduced set. Assuming logistic regression is linear on the sample

size and dimensionality, this is O(ND) total for all the decision nodes at the

same depth, although with a larger constant factor in the big-O notation than

for the leaves. Hence, processing all the decision nodes in the tree is O(∆ND),

or equivalently, running ∆ logistic regressions on the whole training set. See

more details in [26, 25]. A critical computational advantage of TAO is due to

the fact that each node (decision or leaf node) only handles the points in its

reduced set. Therefore, TAO itself can be parallelized depthwise. In summary,

the overall runtime of TAO is O(∆ND) per TAO iteration. We run 10 TAO

iterations in our experiments.

Since the tree-step dominates the label-step, in terms of runtime our algorithm

is almost like sequentially training decision trees (as in boosting). Additionally,

each tree-step can be parallelized. Further acceleration can be done using GPUs.

This is possible with GPU-friendly implementations of logistic regression, and also

because oblique trees involve scalar products (unlike axis-aligned trees).

Finally, this computational cost should also include computing the nearest-
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neighbor graph and its affinity matrix W. This is indeed a large cost, and it affects

all semi-supervised learning methods based on the graph Laplacian. A naive im-

plementation requires O(DN2) to calculate the distance vector for each point and

determine the nearest neighbors. For large datasets, one usually uses approximate

nearest neighbors (e.g. via Locality Sensitive Hashing or other techniques [3]).

3.2 Experiments

This section shows our experimental findings. We demonstrate that the pro-

posed method dominates over other semi-supervised learning frameworks in accu-

racy and approaches fully supervised baseline with far less amount of labeled data.

This is true with practically no exceptions against baseline tree-based models where

accuracy margin is often quite large. As for the other methods (non tree-based),

we either outperform them or achieve similar error, which makes LapTAO a strong

competitor. To show that, we consider several regression and classification bench-

marks of varying sizes and across different domains. We were able to run our

algorithm on a dataset with up to 1 million instances on a regular PC, which

shows its scalability. Moreover, using fashion-mnist as an example, we demon-

strate that the final model, a shallow oblique tree with sparse parameter vector

in each node, provides insights into how it achieves a prediction allowing model

interpretability.

3.2.1 Experimental setup

We compare our proposed approach (LapTAO) with the following baselines:

1) oblique–all fits an oblique tree with full supervision, this shows the theoretical

maximum performance we can achieve; 2) oblique–lbl is the oblique trees trained

on labeled portion of data Dl (this completely discards large portion of unlabeled

data); 3) Self-training (axis–self, oblique–self ) is an iterative procedure that uses

the model predictions to enlarge the portion of labeled data, we closely follow

implementation from [138]; here, “axis” means traditional axis-aligned trees; 4)

Laplacian SVM is a seminal work by Belkin et al. [6] which has similar problem
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formulation as in eq. (3.1) but for SVM. Regarding hyperparameters, given the

fixed cross-validation set (1% of train data), we explored as best as we could all

important hyperparameters for all methods (see details in [145]). These include:

controlling a tree depth (∆), confidence threshold for self-training, σ and C values

for LapSVM, etc. It worth to mention that the hyperparameter settings suggested

by authors or their default values work best in most cases.

We use TAO to train oblique trees and CART [22] to train axis-aligned trees.

For all methods that use TAO, we set the total number of TAO iterations to 15. The

depth ∆ as well as the regularization parameter α are tuned via cross-validation.

As for the settings that are specific to LapTAO, we proceed as follows. To construct

the graph Laplacian, we use the Gaussian affinities with k-nearest neighbors and

perplexity parameter K tuned for each dataset. The linear system in the label-step

is solved either using direct methods (less than 20k dimensions, see caching SVD

in section 3.1.1) or Conjugate Gradient method for large scale problems. We use

γ = 0.1 in all experiments. As for the main loop of the augmented Lagrangian, we

iterate 20 times starting from small value for µ0 = 0.001 multiplied by 1.5 after

each iteration. The remaining details, additional results and datasets descriptions

can be found in [145] and in Appendix B.

3.2.2 Main results

Fig. 3.3 summarizes the main results which are the trade-off plots of test error

versus the percentage of labeled data on two regression and classification tasks.

Intuitively, the error should go down monotonically as we increase the amount of

supervision which is clearly the case in all figures. According to our findings, KNN

and “axis–self” show the worst results in almost all benchmarks. The only case

when KNN performed reasonably good was on MNIST, which is known to work well

with “template classifiers” (e.g. RBF network, kernel SVM, KNN, etc.). Even in

that case it has a large error gap with respect to LapTAO. The poor performance of

the “axis–self” can be explained by suboptimality of greedily grown trees [57] and

suboptimality of the self-training approach, which is mostly based on heuristics.

Next, oblique trees trained on supervised data only (“oblique–lbl”) leads to the
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Figure 3.3: Results on regression (top: year pred, cpu act) and classification (bot-
tom: mnist, susy) tasks. Numbers in brackets report the training size, number of
features and output dimension (or number of classes). x–axis shows the percentage
of labeled data provided to the algorithm and y–axis shows the test error. Base-
lines: oblique–all fully supervised baseline (i.e., trains an oblique tree on 100% of
labeled data); *–lbl uses Dl only to train the corresponding model; *–self is an
iterative self-training approach.
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Figure 3.4: Comparison against LapSVM on Fashion-MNIST (3 classes: “shirt”,
“bag” and “ankle boot”).

significant drop in accuracy (magenta vs black lines). This shows that relying only

on labeled data is not enough to achieve a decent performance. Incorporating an

oblique tree into self-training framework brings certain benefits (“oblique–self”),

notably for classification tasks (green dashed vs solid lines). Finally, LapTAO

consistently improves over all other SSL methods, often by a considerable margin.

For instance, in case of 3% in cpu act and 1% in MNIST, the difference in the

error with the second best SSL approach is several orders of magnitude. It shows

acceptable results even in extreme label scarcity scenarios, e.g. when we provide

< 0.5% of labeled data on year pred and susy. Moreover, LapTAO approaches the

fully supervised baseline more quickly: for MNIST, we can achieve the same ∼ 5%

test error as “oblique–all” using only 20% of labeled training points.

Comparison with Laplacian SVM LapSVM is a natural baseline to compare

with since it uses the same problem formulation as in eq. (3.1) but for the support

vector machines. However, we were not able to include it to the previous compar-

ison (in fig. 3.3) due to implementation issues: 1) it is impractical to apply it for

problems beyond 30k instances as it requires computing the inverse of the modified
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dense Gram matrix on the entire dataset;1 2) it can handle a classification task

only. Therefore, we pick the subset of Fashion-MNIST (3 classes: “shirt”, “bag”

and “ankle boot”) resulting in 18k training points. To make the comparison as

fair as possible, both of the algorithms use the same graph Laplacian matrix and

we enforce the same penalty on it (γ = 0.1). For LapSVM, we use the rbf kernel

with σ = 5 and the hyperparameter for LIBSVM [31] is set to C = 100.

The results are illustrated in fig. 3.4. It is worth to mention that similar to

the original MNIST, “template classifiers”, such as kernel SVM, show quite good

performance on this task which makes LapSVM a strong baseline [136]. On top

of that, the problem formulation in eq. (3.1) is still convex for SVM and can be

efficiently solved, whereas we are dealing with much harder problem for oblique

trees. Therefore, it is nice to see that LapTAO performs similarly (but slightly

worse) up to some point. However, it is surprising to see that the error gap be-

tween our approach and LapSVM narrows as we introduce more label scarcity and

eventually we start to outperform when % of labeled data = 3%. From that point

on, the table turns to the side of LapTAO and the difference becomes more and

more noticeable (especially for 0.6%). One possible explanation for this behavior is

the overfitting issue on small datasets, which is a known problem for kernel SVM,

whereas sparse oblique trees are shown to be relatively robust to that [148].

Training time Table 3.1 reports the training time for different baseline methods.

Overall, LapTAO algorithm for the largest experiment we performed (on susy) took

less than 7 hours and around 3 hours for the moderate dataset size (mnist). This is

comparable to the self-training baseline (i.e., oblique–self) but LapTAO produces

far better trees in terms of accuracy. Please note that we ran our code on a regular

PC (Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz, 32GB RAM), with little parallel

processing and using unoptimized Python implementation. Therefore, the training

runtime for LapTAO can be significantly improved. We did not use any GPUs.

1One could approximate the inverse by Nyström (or other) method but this is beyond the
scope of this paper.
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Dataset \ Method LapTAO oblique–self axis–self SSCT

cput act 1072s 934s 23s 936s
mnist 11027s 9572s 514s 15932s
susy 24578s 17873s 816s >1d

Table 3.1: Training runtime for different semi-supervised learning algorithms (in
seconds).

3.2.3 Model interpretability

Model explainability and interpretability is a topic of renewed interest due to

the widespread usage of machine learning and the risks associated with privacy,

algorithmic bias, etc. In order to trust and rely on such automated systems, it is

crucial to understand how they achieve a certain prediction. In contrast to “black

box” models, decision trees are long considered as interpretable models due to

the hierarchical structure. This allows to transform the model prediction as “if-

then” rules extracted from root-to-leaf path. Specifically for oblique trees, each

logical clause takes the following form: go to the left child if wTx < w0, else go

to the right. This makes the interpretation a little harder since we need to look

at linear combination of features at each split. However, in our case, we add ℓ1

penalty which encourages parameter vector at each node to be sparse, i.e., only

few features participate in decision making.

In this section, we argue that the oblique trees trained using LapTAO strike

a good trade-off between accuracy and interpretability which is controlled via hy-

perparameter α. To illustrate this, we use the same subset of Fashion-MNIST

as in the previous section and train a sparse oblique tree using LapTAO (10% of

training data are labeled). By decreasing the value of α we enforce more sparsity

resulting into shallower and more interpretable trees (since complexity decreases).

However, we sacrifice the performance since the error goes up.

Fig. 3.5 shows the results for α = 1 and α = 10. For simplicity, let us focus

on the bottom tree (α = 10). Clearly, each leaf contains instances of nearly the

same class since the average image looks like a representative “template” from

the corresponding class. As for the decision node, consider the root (node #1).

All “boot” images are sent to the right child of the root. Also, it is easy to
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Figure 3.5: Some of the oblique trees obtained from LapTAO on Fashion-MNIST.
Both figures use 10% of labeled data, but they differ in regularization penalty (α)
on the tree: (top) α = 1 with Etest = 2.1% and (bottom) α = 10 with Etest = 3.9%.
At each decision node, we illustrate the weight vector of dimension 784 reshaped
into 28× 28 square where each value is colored according to their sign and magni-
tude (positive, negative and zero values are blue, red, and white, respectively). At
each leaf, we show the class label, the total number of training points in that leaf
(in brackets), and the average of input images in that leaf (as a greyscale image).
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notice that such images do not contain any pixels in the top-left quadrant of the

image. Therefore, the weight vector at the root has negative (blue) values in

the corresponding elements and we know that negative values are responsible for

sending an instance to the left. In other words, all images that have something in

the top-left quadrant are sent to the left. Therefore, boots will end up in the right

child. Similarly, node #2 sends most of the images that have M-shaped stroke in

the top-center part (e.g. large bags, shirts with collar) to the left child. Following

the same logic, we can obtain meaningful insights for each decision node. Also

note that all nodes have majority of values equal to zero (thanks to the sparsity)

which makes the interpretation easier.



Chapter 4

Decision Trees for Nonlinear

Embeddings

In the previous chapter, we considered training decision trees in semi-supervised

learning setup–one particular application where manifold regularization appears.

Indeed, if we want to leverage unlabeled data, it is natural to take into account a ge-

ometrical shape of data and assume that similar instances have similar predictions,

which is incorporated into an objective as a graph prior (e.g. graph Laplacian).

Another common application of manifold regularization is nonlinear dimensional-

ity reduction. Specifically, most of the methods for training nonlinear embeddings

formulate the learning problem where manifold regularization is involved (e.g. pair-

wise and geodesic distances).

The reader may wonder why we may need to use decision trees in dimension-

ality reduction (DR) problems? The answer is directly related to the popular

property of decision trees–interpretability. Model interpretability has seen much

research in supervised settings (classification, regression) but much less in unsuper-

vised ones, specifically in dimensionality reduction (DR) and nonlinear embeddings

(NLE), which we focus on here. Two outputs of a DR procedure are relevant for

interpretability. One is the low-dimensional projections of the data points (the em-

bedding, which can be visualized (typically in 2D scatterplots) to find patterns in

the data. This has been widely exploited and is indeed a main application of DR.

The other output is the projection mapping from high- to low-dimensional points.

62
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This has received some attention for linear models such as PCA but very little

otherwise, in particular for NLE methods such as t-SNE, which do not naturally

define an out-of-sample mapping, rather they directly learn a low-dimensional pro-

jection for each training point, by optimizing an objective function of the latter.

A further consideration is that interpretability is not a black-and-white concept.

In learning an explainable DR mapping, it is useful to be able to control the com-

plexity of the explanation so as to span a range from a very accurate, detailed but

complex explanation, to a less accurate but simpler explanation that may capture

important overall patterns.

Let us call F: x ∈ R
D → z ∈ R

L the projection mapping, which maps a

high-dimensional point x in D dimensions to a low-dimensional point z in L≪ D

dimensions. This mapping is in general nonlinear and we seek a type of mapping

that can be interpreted. Black-box mappings such as a neural net or a random

forest, while highly accurate, are very hard to interpret in a robust way, in spite

of many efforts in this direction, such as feature importance or saliency maps [83].

We focus here on models that are easier to interpret by construction. One candi-

date are linear mappings, but they are too restrictive and would distort the NLE

considerably. Another candidate are generalized additive models [56], which define

F as a sum of functions each operating on a single feature (or perhaps a pair of

them). These functions can then be plotted to inspect them. This model is also

very restrictive, in that features are generally expected to interact, and it scales

poorly with the dimension D. A third candidate are traditional, axis-aligned deci-

sion trees, where each decision node thresholds a single input feature and has two

children. This is also very restrictive for several reasons. First, the axis-aligned

structure of the splits is wholly inadequate if features interact or have correlations,

and it gives rise to a large number of nodes, which makes the tree hard to interpret.

Besides, the maximum number of features that a binary tree with K leaves can

use is K−1 (one per decision node), and each root-leaf path would use even fewer.

When D is large, as is expected in DR, this would force the tree to have many

nodes, or else it would apply a drastic feature selection on the embedding.

Then, our proposed mapping is a sparse oblique tree, which we discussed in
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detail in the previous chapters. This type of tree is ideal for our goal for several

reasons. It can model nonlinear mappings using very few nodes compared to an

axis-aligned tree. It is especially convenient when clusters exist in the data, which

can be captured by the tree leaves. It can make full use of any and all features

of an instance, and exactly which features will be used depends on the path the

instance follows. And, crucially, we can control the tree complexity in number

of nodes, number of features used in each decision node and number of nonzero

weights in each leaf mapping via penalty hyperparameter. This offers a convenient

way to achieve a range of explanation levels, from detailed and accurate to simple

and less accurate. If penalty is large enough, the tree will collapse to a single leaf

node, i.e., a sparse linear mapping. Indeed, and as seen in our experiments, the

sparse oblique tree is much more accurate than an axis-aligned tree while using

many fewer nodes, which makes the tree quite interpretable.

In this chapter, we consider the problem of optimally learning interpretable

out-of-sample mappings for nonlinear embedding methods such as t-SNE. We first

discuss (section 4.1) how to train an optimal mapping (a sparse oblique tree) jointly

learned during the embedding process, not after the fact. However, this implies a

difficult optimization problem, because the tree is not differentiable. We give an

algorithm that solves this by alternatingly updating an embedding and a tree, and

which works with any type of NLE, such as t-SNE [127], the elastic embedding [24],

multidimensional scaling [18], the Sammon mapping [112] or others. Then, in

section 4.2 we show that the resulting tree can indeed provide useful insight into

the data beyond what the 2D visualization of the embedding itself provides.

4.1 Jointly learning an optimal tree and embed-

ding

A nonlinear embedding (NLE) method defines an objective function E(Z)

over the low-dimensional coordinates ZL×N = (z1, . . . , zN) of the high-dimensional
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training points XD×N = (x1, . . . ,xN). For example, for t-SNE [127] this is:

E(Z) =
N
∑

n=1

D(Pn‖Qn(Z)) =
N
∑

n,m=1

pnm log
pnm

qnm(Z)
(4.1)

while for the elastic embedding [24] it is:

E(Z) =

N
∑

n,m=1

(

wnm‖zn − zm‖2 + αe−‖zn−zm‖2
)

(4.2)

where the specific terms are not relevant here (but they are instances of manifold

regularization), what matters is that E is a function of the low-dimensional projec-

tions and that is what must be optimized over. Call the result the free embedding,

in that it is not constrained to obey any particular mapping F. However, if we

want an out-of-sample mapping F so we can project new points, then zn = F(xn)

for n = 1, . . . , N by definition and so we have a parametric embedding objective

function:

min
F

P (F) = E(F(X)) + λφ(F) (4.3)

where φ(F) is a regularization term on the mapping. For example, for the elastic

embedding E(F(X)) would be:

N
∑

n,m=1

(

wnm‖F(xn)− F(xm)‖2 + αe−‖F(xn)−F(xm)‖2
)

(4.4)

Note that the process (which we call direct fit) of training a mapping directly to

predict the free embedding, i.e., minF ‖Z− F(X)‖2, will work poorly unless F is

very flexible, and will result in a new embedding “F(X)” that can considerably

distort the optimal embedding. This is particularly true if we limit the complexity

of F to make it more interpretable.

If F was differentiable, we could easily optimize (4.3) via gradient-based meth-

ods, as done for the Sammon mapping or MDS with a RBF network [85, 133], or

for t-SNE with a neural net [124]. However, this is not possible with a tree, which

defines a non-differentiable mapping. Instead, we apply the method of auxiliary

coordinates (MAC) [28, 29] designed for problems involving nested functions as

follows. We reformulate the problem in a way that allows us to derive an iterative
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algorithm that capitalizes on the fact that we can use TAO to train a regression

tree and the original NLE algorithm to train the embedding.

First, consider the following constrained problem, where the nesting is broken:

min
Z,F

E(Z) + λφ(F) s.t. Z = F(X) (4.5)

where E is the original, free embedding objective function. This is equivalent to

the parametric embedding problem (4.3). A similar formulation was presented

in [27], but here F is a nondifferentiable decision tree. We solve this using a

penalty method, such as the quadratic-penalty method (in the experiments we use

the augmented Lagrangian). This defines a new, unconstrained objective function

of Z and F:

min
Z,F

E(Z) + λφ(F) + µ‖Z− F(X)‖2. (4.6)

Optimizing this for fixed µ > 0 produces (Zµ,Fµ) which, as µ→∞, progressively

force the constraints to be satisfied while making the objective as large as possible.

Note that, for µ → 0+ (and λ = 0), this produces as Z0 the free embedding and

as F0 a tree fitted to that embedding; this is what we called direct fit earlier. As

µ increases, Z and F cooperatively reorganize to find a better solution of (4.5).

Finally, we optimize (4.6) itself by alternating optimization over Z and F. Over Z,

eq. (4.6) is the original embedding objective E but with a quadratic regularization

term on Z:

min
Z

E(Z) + µ‖Z− F(X)‖2 (4.7)

This can be easily solved by reusing an algorithm to optimize the original em-

bedding (t-SNE, the elastic embedding or whatever), with a minor modification

to handle the additional quadratic term. This is very convenient because we can

capitalize on the literature of NLE optimization, specifically on algorithms that

scale to large datasets [137, 126]. Over F, the problem reduces to a regression fit

which we solve using TAO:

min
F

‖Z− F(X)‖2 + λ

µ
φ(F) (4.8)

The ability of TAO to take an initial tree and improve over it is essential here to

make sure the step over F improves over the previous iteration, and to be able to

use warm-start to speed up the computation.
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input training set X = {xn}Nn=1;

Z← fit the free embedding (eq. (4.1),(4.2), etc.);

F← fit a tree to (X,Z0) via TAO algorithms;

β ← 0 (initialize Lagrange multipliers);

for µ = µ0 < µ1 < µ2 < · · · < µmax;

repeat

F← F+ 1
µ
β;

optimize over Z given F (eq. (4.7));

Z← Z− 1
µ
β;

optimize over F given Z (eq. (4.8)) via TAO algorithm;

β ← β − µ(Z− F) (multipliers step);

until stop

end for

return F

Figure 4.1: Joint optimization framework for learning a tree and embedding (aug-
mented Lagrangian version).

In summary, our algorithm alternates between training an embedding with

a regularization term that pushes it towards the current tree predictions, and

training a tree to fit the current embedding. As the penalty term µ increases, the

embedding and the tree coadapt until they agree on an optimal result. Fig. 4.1

gives the pseudocode for the overall algorithm.

Relation to LapTAO and generalizing the framework One may notice a

clear similarity between this algorithm and LapTAO described in chapter 3. In-

deed, both of them are iterative algorithms involving two simple steps. The “tree-

step” in LapTAO is similar to the F step above, i.e., both requires fitting a decision

tree. The step over coordinates (Z step or “label-step”) differs since for this prob-

lem we need to train embeddings whereas LapTAO simply solves a linear system.

However, their essential meaning is the same: Z is non-parametric estimator of the

underlying model which we try to “imitate” via decision tree. With this in mind,
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we can apply this framework more generally to any objective involving some form

of manifold regularization. The steps are quite simple: 1) reformulate the problem

by introducing variables and constraints for each instance; 2) move the constraints

to an objective via quadratic penalty (or augmented Lagrangian); 3) apply alter-

nating optimization where step over tree will involve fitting it in usual supervised

fashion, whereas step over Z will generally require nonlinear optimization methods

to solve.

4.2 Experiments

Our experimental findings demonstrate that 1) tree embedding as an out-of-

sample mapping is quite accurate and helps to interpret the embeddings; 2) our

optimization algorithm generally finds better optima compared to the naive direct

fit. Moreover, we illustrate that tree embeddings can provide helpful insights

(which are not covered by the original embeddings) about data. Please, refer to

the companion paper for details of performed experiments [144].

4.2.1 Setup

Although our method generalizes to any type of nonlinear embeddings, we

perform experiments on t-SNE and elastic embedding (EE). For both of them, we

use our in-house implementation in Matlab so that we can easily handle Z-step of

our algorithm. The reduced dimension is set to 2D. The details of the optimization

are as follows: we use the spectral direction method [131] where the gradients of

the embedding objective were approximated by the Barnes-Hut method [125] for

t-SNE and the fast multipole method [132] for EE. We apply spectral directions

until the relative error of the two recent iterates is less than 10−4. For computing

pairwise distances between input instances, we use entropic affinities with varying

perplexity (K) depending on dataset [58] (K = 15 in most experiments). The

α (see eq. (4.2)) parameter for the elastic embedding is set to l = 100 in all

experiments.

We use TAO to train decision trees in F-step (eq. (4.8)) which is implemented



69

in Python. All reported trees in this section are sparse oblique trees with linear

leaves. An initial tree is a complete binary tree of given depth (∆) with random

parameters at each node (each node’s weight vector has Gaussian (0,1) entries,

and then we normalize the vector to unit length). We use 15 TAO iterations

to train trees at each µ (also in direct fit). To optimize individual nodes, we

use Lasso linear regression [55] in leaves and ℓ1-regularized logistic regression in

decision nodes (both implemented in scikit-learn [100]); and they use the same

sparsity penalty (λ). Throughout this section, direct fit means a minimizer of

minF ‖Z0 − F(X)‖2+λφ(F), i.e., fitting a tree (with TAO) on the free embedding

using the same λ penalty as our method. To train the direct fit, we initialize TAO

from a complete tree of depth ∆ with random parameters at each node. Maximum

number of TAO iterations is set to 15. We denote our proposed method as the tree

embedding which closely follows the implementation described in fig. 4.1. Initial

value for β (estimate of the Lagrange multipliers) is set to zero. The initialization

for Z is the free embedding (e.g. by running t-SNE on data). We use the direct

fit as the beginning of the path (line 3 in fig 4.1). Empirically we found out that

rescaling the penalty parameter in eq. (4.8) such that it always equals to λ (instead

of λ
µ
) shows better performance, so we apply it in our experiments. After each AL

step, we use warm-start in both steps by starting from the previous iteration’s

values. Our main running script is in Python which uses Matlab Engine API to

run Z-step.

4.2.2 Results

We first evaluate our method on the EE objective. We use a subset of 6

classes from 20 newsgroups document classification benchmark. Tf-idf statistics

on unigrams and bigrams were used to represent each document (1000 features in

total). Before running EE, we project data into 20 dimensions using PCA which

helps us to eliminate noises. Pairwise distances were calculated using entropic

affinities with perplexity K = 15. Then we run EE with homotopy parameter

l = 100 to obtain the free embedding. For our method (tree embedding), we set

the number of iterations to 15 and start from small value for µ0 = 1e− 6 which is
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multiplied by 1.4 after each iteration.

Fig. 4.2 (bottom) shows 2D embeddings obtained by several methods. Directly

applying EE on preprocessed data (free embedding) yields the best results since it

does not have any constraints. Next, we train a TAO tree to learn out-of-sample

mapping either by the direct fit or by using our method (tree embedding). For both

methods, we set the sparsity penalty for TAO λ = 0.067. However, the spectrum

of various values for λ was explored in companion paper [144] (see animations).

Tree embedding maps the data into 2D with a slight degradation compared to

the free embedding, but noticeably better than the direct fit. The learning curves

(bottom-right) align with that: the 1st iteration of the tree embedding is the direct

fit and there is a clear improvement over iterations.

Fig. 4.2 (top) shows the visualization of the tree embedding (our method). Since

each decision node is oblique (having hyperplane splits) and input features use tf-

idf where each entry is a word, we show up to top-7 words which corresponds to the

largest non-zero values in the weight vector. For each leaf, we show the region of

its responsibility by using instances falling into that leaf (obtained via convex hull

of the 2D mappings) and provide histogram counts of classes where encodings in x-

axis mean: “b”–motorcycles, “h”–hockey, “c”–crypt, “s”–space, “m”–mideast and

“g”–guns. According to the leaf regions, there is a clear clustering structure in the

tree hierarchy because majority of leaves focus on few classes and this was obtained

without explicit ground truth information. Moreover, the hierarchy respects class

ontology by merging instances of similar classes under one subtree. For example,

gun and mideast (leaf #5 and #6) are located under the same parent, whereas their

locations in 2D are not next to each others. Explanation for such separation can be

obtained from decision nodes: features (words) with the highest positive/negative

values were responsible for sending an instance to a certain child. In some cases,

only several words were enough to identify the next node (e.g. 4 words for leaf

#7 and only 1 word for leaf #8). Occasionally, the tree provides some surprising

insights : leaf #8 has only one point which lies within the region of leaf #7 (hockey).

However, the tree decided to separate that point from the remaining group and

assign it closer to leaf #9 (mixed classes). By closely inspecting that document,
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we have found that it discusses several topics (hockey team, donation form some

person, private company name and a url) which seems to be an outlier. These

types of insights are not possible to infer using embeddings only. Finally, for each

leaf, we collect all documents reaching that leaf and show the most frequent words

(text at the bottom of the tree). Although such information can be extracted from

embeddings as well, we argue that this alone is not sufficient for interpretability.

For example, top words in leaf #1 are quite generic words (mostly verbs) and it is

understandable since documents in that group are from all 6 classes. But they are

not insightful to determine why all these documents ended up in that region. On

the other hand, the hierarchy allows us to trace the root-to-leaf path and identify

region-specific words by observing weights at each decision node.

Similar conclusion can be made for fig. 4.3 which is for the “breast cancer”

dataset. Our approach leads to the parametric embedding with a high quality

(bottom panel) and tree allows us to interpret the mapping. Highlighted region

at each leaf makes sense and in agreement with data. Surprisingly, leaf #1 covers

the part of leaf #3. However, careful inspection shows that the border of leaf

#3 contains a lot of patients from benign class and thus the algorithm decided

to assign that region to the first leaf. Again, such observations are not trivial to

detect using only embeddings as we see clear separation into two clusters. In this

experiment, we run t-SNE to obtain the free embedding. We use the original input

features (no PCA) to compute pairwise distances and apply entropic affinities with

perplexity K = 15. To train the tree embedding, we set µ0 = 1e− 5 and multiply

by 1.4 after each step (20 iterations in total).

4.2.3 Direct fit using CART

The naive way to get the tree embedding is to first train the free embedding

(e.g. via EE, t-SNE, etc.) and then fit the traditional decision tree (e.g. using

CART, C4.5) to learn the mapping. However, apart from being suboptimal, we

show that it can be impractical. Potentially, we can fully grow a tree which will

perfectly match the free embedding. But it is well known that such model hugely

overfits and the final tree could be very deep making it hard to interpret. Instead, it
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mse = -0.0
samples = 1
value = -1.0

X[364] <= 0.223
mse = 0.116
samples = 4

value = -1.609

X[716] <= 0.074
mse = 0.003
samples = 3

value = -2.054

X[243] <= 0.512
mse = 0.001
samples = 3

value = -0.756

X[473] <= 0.165
mse = 0.001
samples = 2

value = -0.938

mse = 0.0
samples = 1

value = -1.907

mse = 0.0
samples = 1
value = -1.65

X[418] <= 0.111
mse = 0.006
samples = 2

value = -1.631

X[369] <= 0.086
mse = 0.001
samples = 2

value = -1.897

X[236] <= 0.111
mse = 0.004
samples = 3

value = -1.975

X[205] <= 0.017
mse = 0.0

samples = 2
value = -2.171

X[483] <= 0.031
mse = 0.127
samples = 15
value = -1.125

mse = 0.0
samples = 1

value = -1.909

mse = 0.0
samples = 1

value = -1.924

mse = 0.0
samples = 1
value = -1.64

X[362] <= 0.108
mse = 0.0

samples = 2
value = -0.948

mse = 0.0
samples = 1

value = -1.063

X[123] <= 0.198
mse = 0.001
samples = 3

value = -1.014

mse = 0.0
samples = 1

value = -1.248

X[317] <= 0.079
mse = 0.0

samples = 2
value = -1.095

mse = 0.0
samples = 1
value = -1.14

X[413] <= 0.223
mse = 0.0

samples = 3
value = -2.272

mse = -0.0
samples = 1

value = -2.283

mse = 0.0
samples = 1

value = -1.086

mse = 0.0
samples = 1

value = -1.123

mse = 0.0
samples = 1

value = -1.162

mse = -0.0
samples = 1

value = -1.181

mse = 0.0
samples = 1

value = -1.227

mse = 0.0
samples = 1

value = -1.209

X[428] <= 0.094
mse = 0.0

samples = 2
value = -2.223

mse = 0.0
samples = 1

value = -2.209

X[779] <= 0.186
mse = 0.23

samples = 38
value = 0.595

X[246] <= 0.184
mse = 0.156
samples = 3

value = -0.384

X[892] <= 0.031
mse = 0.004
samples = 2

value = -0.043

X[945] <= 0.106
mse = 0.0

samples = 4
value = -0.287

X[888] <= 0.14
mse = 0.0

samples = 2
value = 2.191

mse = -0.0
samples = 1

value = 2.135

X[537] <= 0.157
mse = 0.025
samples = 49
value = 1.229

X[892] <= 0.024
mse = 0.002
samples = 3

value = 0.846

X[76] <= 0.401
mse = 0.003
samples = 2

value = 1.628

mse = -0.0
samples = 1

value = 1.943

X[431] <= 0.039
mse = 0.82

samples = 582
value = 0.052

X[430] <= 0.112
mse = 0.633
samples = 5

value = 2.229

X[572] <= 0.026
mse = 0.933
samples = 13
value = 1.723

X[523] <= 0.044
mse = 0.367
samples = 2

value = -0.921

X[867] <= 0.086
mse = 0.635
samples = 30
value = -0.361

X[490] <= 0.034
mse = 0.075
samples = 4
value = -1.44

X[249] <= 0.095
mse = 0.116
samples = 7

value = -1.799

mse = -0.0
samples = 1

value = -0.144

X[477] <= 0.099
mse = 0.009
samples = 5

value = -0.829

mse = -0.0
samples = 1

value = -1.264

X[753] <= 0.147
mse = 0.017
samples = 2

value = -1.779

mse = -0.0
samples = 1

value = -1.163

mse = 0.0
samples = 1

value = -1.861

mse = -0.0
samples = 1

value = -2.446

X[502] <= 0.186
mse = 0.021
samples = 4

value = -1.764

X[476] <= 0.035
mse = 0.012
samples = 5

value = -2.053

mse = 0.0
samples = 1

value = -1.476

mse = 0.0
samples = 1

value = -1.455

X[894] <= 0.163
mse = 0.155
samples = 16
value = -1.174

X[157] <= 0.11
mse = 0.02
samples = 2

value = -1.782

mse = 0.0
samples = 1

value = -1.892

mse = -0.0
samples = 1

value = -2.619

X[629] <= 0.077
mse = 0.003
samples = 3

value = -0.987

mse = 0.0
samples = 1

value = -0.763

mse = 0.0
samples = 1
value = -0.69

mse = -0.0
samples = 1

value = -0.767

X[760] <= 0.464
mse = 0.011
samples = 4

value = -1.073

mse = -0.0
samples = 1

value = -1.286

mse = 0.0
samples = 1

value = -0.874

mse = -0.0
samples = 1

value = -0.877

mse = 0.0
samples = 1

value = -1.384

mse = -0.0
samples = 1

value = -1.362

X[248] <= 0.045
mse = 0.0

samples = 3
value = -1.11

mse = 0.0
samples = 1

value = -1.362

mse = 0.0
samples = 1

value = -1.636

mse = 0.0
samples = 1

value = -1.392

X[204] <= 0.086
mse = 0.0

samples = 4
value = -2.275

mse = 0.0
samples = 1

value = -2.363

mse = 0.0
samples = 1

value = -2.419

mse = -0.0
samples = 1

value = -2.441

X[230] <= 0.122
mse = 0.0

samples = 2
value = -1.105

X[652] <= 0.087
mse = 0.0

samples = 2
value = -1.171

X[558] <= 0.093
mse = 0.0

samples = 2
value = -1.218

mse = 0.0
samples = 1

value = -1.256

mse = 0.0
samples = 1

value = -2.069

mse = -0.0
samples = 1

value = -2.052

X[970] <= 0.249
mse = 0.0

samples = 3
value = -2.218

mse = -0.0
samples = 1

value = -2.117

X[961] <= 0.155
mse = 0.289
samples = 41
value = 0.524

X[626] <= 0.119
mse = 0.015
samples = 6

value = -0.206

mse = 0.0
samples = 1
value = -0.63

mse = -0.0
samples = 1

value = -1.496

mse = 0.0
samples = 1

value = 1.243

mse = 0.0
samples = 1

value = 1.432

X[888] <= 0.319
mse = 0.001
samples = 3

value = 2.172

mse = 0.0
samples = 2
value = 1.97

mse = 0.0
samples = 1

value = 1.927

mse = -0.0
samples = 1

value = 1.866

X[230] <= 0.108
mse = 0.031
samples = 52
value = 1.207

X[522] <= 0.072
mse = 0.024
samples = 3

value = 1.733

mse = 0.0
samples = 1

value = 0.274

mse = -0.0
samples = 1

value = 0.481

mse = 0.0
samples = 1

value = 0.518

mse = -0.0
samples = 1

value = 0.549

X[846] <= 0.227
mse = 0.859

samples = 587
value = 0.07

X[437] <= 0.092
mse = 1.666
samples = 15
value = 1.371

X[488] <= 0.021
mse = 0.69

samples = 34
value = -0.488

X[251] <= 0.117
mse = 0.401
samples = 8

value = -1.592

X[246] <= 0.378
mse = 0.034
samples = 6

value = -0.901

X[243] <= 0.634
mse = 0.095
samples = 3

value = -1.573

X[489] <= 0.075
mse = 0.085
samples = 2

value = -2.153

mse = 0.0
samples = 1

value = -3.355

X[896] <= 0.01
mse = 0.037
samples = 9

value = -1.925

X[889] <= 0.14
mse = 0.0

samples = 2
value = -1.465

mse = 0.0
samples = 1

value = -0.982

mse = 0.0
samples = 1

value = -0.813

X[488] <= 0.167
mse = 0.177
samples = 18
value = -1.241

X[994] <= 0.162
mse = 0.132
samples = 2

value = -2.256

mse = 0.0
samples = 1

value = -2.188

mse = -0.0
samples = 1
value = -2.73

mse = 0.0
samples = 1

value = -1.943

mse = 0.0
samples = 1

value = -1.939

X[789] <= 0.217
mse = 0.012
samples = 4

value = -0.931

mse = 0.0
samples = 1

value = -1.291

X[382] <= 0.084
mse = 0.001
samples = 2

value = -0.729

mse = 0.0
samples = 1

value = -0.537

X[444] <= 0.043
mse = 0.016
samples = 5

value = -1.115

X[675] <= 0.067
mse = 0.0

samples = 2
value = -0.875

X[279] <= 0.055
mse = 0.0

samples = 2
value = -1.373

mse = 0.0
samples = 1

value = -1.307

mse = 0.0
samples = 1

value = -1.444

mse = 0.0
samples = 1

value = -1.553

mse = 0.0
samples = 1

value = -1.713

mse = -0.0
samples = 1

value = -1.744

X[148] <= 0.079
mse = 0.012
samples = 4

value = -1.173

X[875] <= 0.086
mse = 0.015
samples = 2

value = -1.514

mse = 0.0
samples = 1

value = -2.317

mse = 0.0
samples = 1

value = -2.314

X[717] <= 0.003
mse = 0.001
samples = 5

value = -2.292

X[494] <= 0.091
mse = 0.0

samples = 2
value = -2.43

mse = 0.0
samples = 1

value = -1.344

mse = -0.0
samples = 1

value = -1.276

X[248] <= 0.099
mse = 0.001
samples = 4

value = -1.138

X[391] <= 0.089
mse = 0.0

samples = 3
value = -1.231

X[447] <= 0.114
mse = 0.0

samples = 2
value = -2.06

mse = 0.0
samples = 1

value = -2.008

X[79] <= 0.462
mse = 0.002
samples = 4

value = -2.193

mse = 0.0
samples = 1

value = -2.068

mse = 0.0
samples = 1

value = -2.273

mse = 0.0
samples = 1

value = -2.231

X[932] <= 0.065
mse = 0.314
samples = 47
value = 0.431

X[993] <= 0.145
mse = 0.188
samples = 2

value = -1.063

mse = 0.0
samples = 1

value = -1.684

mse = -0.0
samples = 1

value = -0.813

mse = 0.0
samples = 1
value = 1.97

mse = 0.0
samples = 1

value = 2.071

mse = 0.0
samples = 1

value = 0.965

X[804] <= 0.009
mse = 0.009
samples = 2

value = 1.338

X[391] <= 0.077
mse = 0.01
samples = 5

value = 2.092

X[524] <= 0.067
mse = 0.001
samples = 2

value = 1.896

mse = 0.0
samples = 1
value = 1.87

mse = 0.0
samples = 1

value = 1.877

mse = 0.0
samples = 1

value = -1.415

mse = -0.0
samples = 1

value = -1.425

X[394] <= 0.056
mse = 0.045
samples = 55
value = 1.236

X[844] <= 0.026
mse = 0.011
samples = 2

value = 0.378

mse = 0.0
samples = 1

value = 0.266

X[278] <= 0.073
mse = 0.0

samples = 2
value = 0.534

mse = 0.0
samples = 1

value = 1.839

mse = 0.0
samples = 1

value = 1.799

mse = 0.0
samples = 1
value = -2.62

mse = -0.0
samples = 1

value = -2.622

mse = 0.0
samples = 1

value = -2.632

mse = 0.0
samples = 1

value = -2.638

X[459] <= 0.088
mse = 0.92

samples = 602
value = 0.103

X[449] <= 0.117
mse = 0.823
samples = 42
value = -0.698

X[243] <= 0.542
mse = 0.155
samples = 9

value = -1.125

X[526] <= 0.163
mse = 0.378
samples = 3

value = -2.554

X[248] <= 0.095
mse = 0.061
samples = 11
value = -1.841

X[258] <= 0.173
mse = 0.007
samples = 2

value = -0.898

X[449] <= 0.175
mse = 0.265
samples = 20
value = -1.343

X[247] <= 0.081
mse = 0.073
samples = 2

value = -2.459

X[600] <= 0.01
mse = 0.0

samples = 2
value = -1.941

mse = 0.0
samples = 1

value = -2.011

mse = 0.0
samples = 1

value = -2.144

mse = 0.0
samples = 1

value = -2.227

X[794] <= 0.086
mse = 0.03
samples = 5

value = -1.003

X[844] <= 0.128
mse = 0.009
samples = 3

value = -0.665

mse = 0.0
samples = 1

value = -0.374

mse = 0.0
samples = 1

value = -0.452

X[477] <= 0.035
mse = 0.023
samples = 7

value = -1.047

mse = -0.0
samples = 1

value = -0.666

mse = 0.0
samples = 1

value = -1.369

mse = 0.0
samples = 1

value = -1.446

mse = 0.0
samples = 1

value = -1.161

mse = 0.0
samples = 1

value = -1.189

X[914] <= 0.147
mse = 0.001
samples = 3

value = -1.351

X[134] <= 0.026
mse = 0.003
samples = 2

value = -1.499

X[216] <= 0.043
mse = 0.0

samples = 2
value = -1.729

mse = -0.0
samples = 1

value = -1.635

mse = 0.0
samples = 1

value = 0.603

mse = 0.0
samples = 1

value = 0.516

X[263] <= 0.138
mse = 0.039
samples = 6

value = -1.287

mse = -0.0
samples = 1

value = -1.849

mse = 0.0
samples = 1

value = -1.936

mse = 0.0
samples = 1

value = -1.967

X[699] <= 0.089
mse = 0.0

samples = 2
value = -2.316

mse = -0.0
samples = 1

value = -2.237

mse = 0.0
samples = 1

value = -2.033

mse = 0.0
samples = 1

value = -2.084

X[375] <= 0.1
mse = 0.005
samples = 7

value = -2.332

mse = 0.0
samples = 1

value = -1.922

mse = 0.0
samples = 1

value = -2.561

mse = 0.0
samples = 1
value = -2.8

X[636] <= 0.07
mse = 0.001
samples = 2
value = -1.31

X[329] <= 0.094
mse = 0.003
samples = 7

value = -1.178

mse = 0.0
samples = 1

value = -0.976

mse = 0.0
samples = 1

value = -0.733

X[563] <= 0.049
mse = 0.001
samples = 3

value = -2.043

X[244] <= 0.067
mse = 0.004
samples = 5

value = -2.168

X[779] <= 0.086
mse = 0.0

samples = 2
value = -2.252

mse = 0.0
samples = 1

value = -2.366

mse = 0.0
samples = 1

value = -2.355

mse = -0.0
samples = 1
value = -2.38

X[611] <= 0.11
mse = 0.396
samples = 49
value = 0.37

X[152] <= 0.061
mse = 0.19
samples = 2

value = -1.249

X[42] <= 0.109
mse = 0.003
samples = 2
value = 2.02

X[768] <= 0.013
mse = 0.037
samples = 3

value = 1.213

mse = 0.0
samples = 1

value = 1.173

mse = 0.0
samples = 1
value = 1.7

mse = 0.0
samples = 1

value = 2.569

mse = 0.0
samples = 1
value = 2.0

X[248] <= 0.043
mse = 0.015
samples = 7

value = 2.036

mse = 0.0
samples = 1
value = 1.64

X[767] <= 0.131
mse = 0.0

samples = 2
value = 1.874

mse = 0.0
samples = 1

value = 1.931

X[715] <= 0.138
mse = 0.0

samples = 2
value = -1.42

mse = 0.0
samples = 1

value = -1.385

mse = 0.0
samples = 1

value = -1.507

mse = -0.0
samples = 1

value = -1.526

X[640] <= 0.026
mse = 0.069
samples = 57
value = 1.206

X[352] <= 0.098
mse = 0.016
samples = 3

value = 0.444

mse = 0.0
samples = 1

value = 2.192

mse = -0.0
samples = 1

value = 2.212

mse = 0.0
samples = 1

value = 2.106

mse = 0.0
samples = 1

value = 2.116

mse = 0.0
samples = 1

value = 1.619

X[320] <= 0.059
mse = 0.0

samples = 2
value = 1.819

X[764] <= 0.084
mse = 0.0

samples = 2
value = -2.621

X[706] <= 0.181
mse = 0.0

samples = 2
value = -2.635

mse = 0.0
samples = 1

value = -2.606

mse = -0.0
samples = 1
value = -2.61

X[248] <= 0.081
mse = 0.953

samples = 644
value = 0.05

X[87] <= 0.092
mse = 0.593
samples = 12
value = -1.483

X[337] <= 0.073
mse = 0.169
samples = 13
value = -1.696

mse = -0.0
samples = 1

value = 1.225

X[510] <= 0.103
mse = 0.35

samples = 22
value = -1.444

mse = 0.0
samples = 1

value = 1.488

mse = 0.0
samples = 1

value = 0.002

mse = 0.0
samples = 1
value = 1.76

X[998] <= 0.023
mse = 0.001
samples = 3

value = -1.964

X[363] <= 0.062
mse = 0.002
samples = 2

value = -2.185

mse = 0.0
samples = 1

value = -2.827

mse = 0.0
samples = 1

value = -2.953

X[437] <= 0.082
mse = 0.049
samples = 8

value = -0.876

X[502] <= 0.102
mse = 0.002
samples = 2

value = -0.413

mse = 0.0
samples = 1

value = -1.669

mse = -0.0
samples = 1

value = -1.266

X[995] <= 0.18
mse = 0.036
samples = 8

value = -0.999

mse = -0.0
samples = 1

value = -0.555

X[722] <= 0.116
mse = 0.001
samples = 2

value = -1.407

X[896] <= 0.098
mse = 0.0

samples = 2
value = -1.175

X[478] <= 0.034
mse = 0.007
samples = 5
value = -1.41

X[7] <= 0.026
mse = 0.002
samples = 3

value = -1.697

mse = 0.0
samples = 1

value = 0.382

X[955] <= 0.219
mse = 0.002
samples = 2

value = 0.559

X[509] <= 0.025
mse = 0.072
samples = 7

value = -1.367

X[878] <= 0.126
mse = 0.0

samples = 2
value = -1.951

X[7] <= 0.065
mse = 0.001
samples = 3

value = -2.289

X[79] <= 0.047
mse = 0.001
samples = 2

value = -2.059

X[353] <= 0.098
mse = 0.023
samples = 8
value = -2.28

X[433] <= 0.135
mse = 0.014
samples = 2
value = -2.68

X[328] <= 0.144
mse = 0.006
samples = 9

value = -1.207

X[391] <= 0.184
mse = 0.015
samples = 2

value = -0.854

mse = 0.0
samples = 1

value = -1.661

mse = 0.0
samples = 1

value = -1.469

mse = 0.0
samples = 1

value = -2.041

mse = 0.0
samples = 1

value = -1.959

X[328] <= 0.423
mse = 0.006
samples = 8

value = -2.121

X[658] <= 0.116
mse = 0.003
samples = 3
value = -2.29

X[113] <= 0.102
mse = 0.0

samples = 2
value = -2.368

mse = -0.0
samples = 1

value = -2.583

mse = 0.0
samples = 1

value = -1.448

mse = -0.0
samples = 1

value = -1.308

X[664] <= 0.053
mse = 0.486
samples = 51
value = 0.306

X[209] <= 0.008
mse = 0.179
samples = 5

value = 1.536

X[0] <= 0.072
mse = 0.069
samples = 2

value = 1.436

X[667] <= 0.07
mse = 0.081
samples = 2

value = 2.285

mse = 0.0
samples = 1

value = 1.165

mse = 0.0
samples = 1

value = 0.662

mse = 0.0
samples = 1

value = 2.038

mse = 0.0
samples = 1

value = 2.388

X[479] <= 0.148
mse = 0.031
samples = 8

value = 1.986

mse = 0.0
samples = 1

value = 1.431

mse = 0.0
samples = 1

value = 3.194

mse = 0.0
samples = 1

value = 3.171

mse = 0.0
samples = 1

value = 1.773

mse = 0.0
samples = 1

value = 1.724

X[141] <= 0.146
mse = 0.001
samples = 3

value = 1.893

mse = -0.0
samples = 1

value = 1.804

X[883] <= 0.071
mse = 0.0

samples = 3
value = -1.408

X[721] <= 0.16
mse = 0.0

samples = 2
value = -1.516

mse = 0.0
samples = 1

value = -1.564

mse = -0.0
samples = 1

value = -1.585

X[891] <= 0.09
mse = 0.094
samples = 60
value = 1.168

X[638] <= 0.091
mse = 0.0

samples = 2
value = 2.202

X[477] <= 0.039
mse = 0.0

samples = 2
value = 2.111

X[157] <= 0.043
mse = 0.009
samples = 3

value = 1.752

mse = 0.0
samples = 1

value = 2.629

mse = -0.0
samples = 1

value = 2.594

X[379] <= 0.073
mse = 0.0

samples = 4
value = -2.628

X[446] <= 0.006
mse = 0.0

samples = 2
value = -2.608

X[243] <= 0.082
mse = 0.988

samples = 656
value = 0.022

X[912] <= 0.129
mse = 0.723
samples = 14
value = -1.487

X[81] <= 0.121
mse = 0.693
samples = 23
value = -1.317

X[188] <= 0.129
mse = 0.772
samples = 2

value = 0.881

X[878] <= 0.043
mse = 0.013
samples = 5

value = -2.053

X[712] <= 0.132
mse = 0.004
samples = 2
value = -2.89

mse = 0.0
samples = 1

value = -0.542

mse = -0.0
samples = 1

value = -0.485

X[231] <= 0.068
mse = 0.074
samples = 10
value = -0.783

X[350] <= 0.033
mse = 0.041
samples = 2

value = -1.468

mse = 0.0
samples = 1
value = -0.01

mse = 0.0
samples = 1

value = 0.295

X[248] <= 0.089
mse = 0.052
samples = 9
value = -0.95

X[583] <= 0.129
mse = 0.014
samples = 4

value = -1.291

X[360] <= 0.36
mse = 0.025
samples = 8

value = -1.518

mse = -0.0
samples = 1
value = -0.97

X[643] <= 0.241
mse = 0.008
samples = 3
value = 0.5

mse = -0.0
samples = 1
value = 0.95

mse = 0.0
samples = 1

value = 1.309

mse = 0.0
samples = 1

value = 1.264

mse = 0.0
samples = 1

value = 2.005

mse = 0.0
samples = 1

value = 1.936

mse = 0.0
samples = 1

value = 2.235

mse = -0.0
samples = 1

value = 2.257

X[878] <= 0.057
mse = 0.115
samples = 9

value = -1.497

X[199] <= 0.046
mse = 0.014
samples = 5

value = -2.197

X[885] <= 0.114
mse = 0.046
samples = 10
value = -2.36

mse = 0.0
samples = 1

value = -1.545

mse = 0.0
samples = 1

value = -0.266

mse = 0.0
samples = 1

value = -0.664

mse = 0.0
samples = 1

value = -1.503

mse = 0.0
samples = 1

value = -1.161

X[101] <= 0.104
mse = 0.026
samples = 11
value = -1.143

X[940] <= 0.112
mse = 0.009
samples = 2

value = -1.565

X[826] <= 0.018
mse = 0.002
samples = 2
value = -2.0

mse = 0.0
samples = 1

value = -1.814

mse = 0.0
samples = 1

value = -1.645

mse = 0.0
samples = 1

value = -1.751

X[343] <= 0.184
mse = 0.011
samples = 11
value = -2.167

X[294] <= 0.047
mse = 0.01
samples = 3

value = -2.439

mse = 0.0
samples = 1

value = -1.456

mse = 0.0
samples = 1
value = -1.73

X[581] <= 0.059
mse = 0.005
samples = 2

value = -1.378

mse = 0.0
samples = 1

value = -1.143

X[409] <= 0.008
mse = 0.582
samples = 56
value = 0.416

X[956] <= 0.124
mse = 0.255
samples = 4

value = 1.861

mse = 0.0
samples = 1

value = -1.579

mse = -0.0
samples = 1

value = -1.891

mse = 0.0
samples = 1

value = 2.535

mse = -0.0
samples = 1

value = 3.146

X[626] <= 0.128
mse = 0.063
samples = 2

value = 0.913

X[327] <= 0.11
mse = 0.031
samples = 2

value = 2.213

X[451] <= 0.1
mse = 0.058
samples = 9

value = 1.925

mse = -0.0
samples = 1

value = 1.108

mse = 0.0
samples = 1

value = 3.104

X[299] <= 0.03
mse = 0.0

samples = 2
value = 3.182

mse = 0.0
samples = 1
value = 2.81

mse = -0.0
samples = 1

value = 2.465

X[384] <= 0.057
mse = 0.001
samples = 2

value = 1.749

X[283] <= 0.135
mse = 0.002
samples = 4

value = 1.871

mse = 0.0
samples = 1

value = 2.362

mse = -0.0
samples = 1

value = 2.371

X[450] <= 0.161
mse = 0.003
samples = 5

value = -1.452

X[363] <= 0.087
mse = 0.0

samples = 2
value = -1.574

X[217] <= 0.117
mse = 0.124
samples = 62
value = 1.201

X[352] <= 0.133
mse = 0.036
samples = 5

value = 1.896

mse = 0.0
samples = 1

value = 2.581

mse = 0.0
samples = 1

value = 2.226

mse = 0.0
samples = 1

value = 2.671

X[251] <= 0.126
mse = 0.0

samples = 2
value = 2.611

X[894] <= 0.006
mse = 0.0

samples = 6
value = -2.621

mse = 0.0
samples = 1

value = -2.688

X[258] <= 0.126
mse = 1.03

samples = 670
value = -0.009

X[939] <= 0.191
mse = 1.055
samples = 25
value = -1.141

X[645] <= 0.034
mse = 0.154
samples = 7

value = -2.292

X[649] <= 0.068
mse = 0.001
samples = 2

value = -0.513

X[994] <= 0.059
mse = 0.133
samples = 12
value = -0.897

X[624] <= 0.127
mse = 0.023
samples = 2

value = 0.142

X[360] <= 0.368
mse = 0.065
samples = 13
value = -1.055

X[207] <= 0.2
mse = 0.051
samples = 9

value = -1.457

X[575] <= 0.031
mse = 0.044
samples = 4

value = 0.613

mse = 0.0
samples = 1

value = 1.128

X[67] <= 0.125
mse = 0.001
samples = 2

value = 1.287

mse = -0.0
samples = 1

value = 1.936

mse = 0.0
samples = 1

value = 1.828

X[572] <= 0.031
mse = 0.001
samples = 2

value = 1.971

mse = 0.0
samples = 1

value = 2.291

X[477] <= 0.115
mse = 0.0

samples = 2
value = 2.246

X[505] <= 0.038
mse = 0.192
samples = 14
value = -1.747

X[580] <= 0.095
mse = 0.097
samples = 11
value = -2.286

X[491] <= 0.04
mse = 0.04
samples = 2

value = -0.465

X[908] <= 0.037
mse = 0.029
samples = 2

value = -1.332

mse = 0.0
samples = 1

value = 0.654

mse = -0.0
samples = 1

value = 0.882

X[595] <= 0.1
mse = 0.046
samples = 13
value = -1.208

X[127] <= 0.042
mse = 0.009
samples = 3

value = -1.938

mse = 0.0
samples = 1

value = -0.287

mse = 0.0
samples = 1

value = -0.295

mse = 0.0
samples = 1

value = -0.105

mse = 0.0
samples = 1

value = 0.053

X[625] <= 0.038
mse = 0.003
samples = 2

value = -1.698

X[540] <= 0.105
mse = 0.024
samples = 14
value = -2.225

X[158] <= 0.124
mse = 0.019
samples = 2

value = -1.593

mse = 0.0
samples = 1

value = -1.068

X[769] <= 0.038
mse = 0.016
samples = 3
value = -1.3

mse = 0.0
samples = 1

value = -0.933

mse = 0.0
samples = 1

value = -1.661

mse = 0.0
samples = 1

value = -1.587

X[521] <= 0.062
mse = 0.69

samples = 60
value = 0.512

X[892] <= 0.071
mse = 0.024
samples = 2

value = -1.735

X[357] <= 0.063
mse = 0.093
samples = 2
value = 2.84

X[696] <= 0.072
mse = 0.469
samples = 4

value = 1.563

X[677] <= 0.238
mse = 0.112
samples = 10
value = 1.843

mse = 0.0
samples = 1

value = 1.096

X[890] <= 0.024
mse = 0.001
samples = 3

value = 3.156

X[244] <= 0.06
mse = 0.03
samples = 2

value = 2.637

mse = 0.0
samples = 1

value = 1.451

mse = -0.0
samples = 1

value = 1.399

mse = 0.0
samples = 1

value = 2.176

mse = 0.0
samples = 1

value = 2.224

mse = 0.0
samples = 1

value = 2.076

mse = -0.0
samples = 1
value = 2.08

X[244] <= 0.179
mse = 0.005
samples = 6
value = 1.83

mse = -0.0
samples = 1

value = 1.661

mse = 0.0
samples = 1

value = 1.598

mse = -0.0
samples = 1

value = 1.634

mse = 0.0
samples = 1

value = 1.928

mse = 0.0
samples = 1

value = 1.857

X[658] <= 0.139
mse = 0.0

samples = 2
value = 2.366

mse = 0.0
samples = 1

value = 2.286

X[851] <= 0.19
mse = 0.005
samples = 7

value = -1.487

mse = -0.0
samples = 1

value = -1.204

mse = 0.0
samples = 1

value = -1.838

mse = -0.0
samples = 1

value = -1.686

mse = 0.0
samples = 1

value = -1.877

mse = 0.0
samples = 1

value = -1.832

mse = 0.0
samples = 1

value = -2.784

mse = 0.0
samples = 1

value = -2.718

mse = 0.0
samples = 1
value = -2.86

mse = 0.0
samples = 1

value = -2.907

X[24] <= 0.124
mse = 0.151
samples = 67
value = 1.253

X[706] <= 0.063
mse = 0.031
samples = 2

value = 2.404

mse = 0.0
samples = 1

value = 2.724

mse = 0.0
samples = 1

value = 2.369

mse = 0.0
samples = 1

value = 2.439

mse = -0.0
samples = 1

value = 2.432

mse = 0.0
samples = 1

value = 2.495

X[585] <= 0.09
mse = 0.001
samples = 3

value = 2.631

mse = 0.0
samples = 1

value = 2.398

mse = 0.0
samples = 1

value = 2.366

mse = 0.0
samples = 1

value = 2.385

mse = -0.0
samples = 1

value = 2.324

X[973] <= 0.329
mse = 0.001
samples = 7

value = -2.631

mse = 0.0
samples = 1

value = -2.757

mse = 0.0
samples = 1

value = -2.376

mse = 0.0
samples = 1

value = -2.385

X[892] <= 0.161
mse = 1.075

samples = 695
value = -0.05

X[329] <= 0.085
mse = 0.666
samples = 9

value = -1.897

X[244] <= 0.089
mse = 0.25

samples = 14
value = -0.749

X[362] <= 0.04
mse = 0.099
samples = 22
value = -1.219

X[815] <= 0.258
mse = 0.078
samples = 5

value = 0.716

X[961] <= 0.071
mse = 0.094
samples = 3

value = 1.503

X[464] <= 0.046
mse = 0.005
samples = 3

value = 1.923

X[509] <= 0.026
mse = 0.001
samples = 3

value = 2.261

X[263] <= 0.151
mse = 0.222
samples = 25
value = -1.984

X[914] <= 0.025
mse = 0.222
samples = 4

value = -0.899

X[377] <= 0.097
mse = 0.013
samples = 2

value = 0.768

mse = 0.0
samples = 1

value = 1.278

X[753] <= 0.019
mse = 0.121
samples = 16
value = -1.345

X[500] <= 0.103
mse = 0.0

samples = 2
value = -0.291

X[888] <= 0.053
mse = 0.006
samples = 2

value = -0.026

mse = 0.0
samples = 1

value = -0.428

X[328] <= 0.244
mse = 0.051
samples = 16
value = -2.16

X[896] <= 0.185
mse = 0.074
samples = 3

value = -1.418

X[912] <= 0.222
mse = 0.037
samples = 4

value = -1.208

X[350] <= 0.118
mse = 0.001
samples = 2

value = -1.624

mse = 0.0
samples = 1

value = 0.155

mse = 0.0
samples = 1

value = 0.762

mse = 0.0
samples = 1

value = 2.201

mse = -0.0
samples = 1

value = 2.212

mse = 0.0
samples = 1

value = 3.278

mse = -0.0
samples = 1

value = 3.339

X[263] <= 0.097
mse = 0.826
samples = 62
value = 0.44

X[509] <= 0.109
mse = 0.706
samples = 6

value = 1.989

X[355] <= 0.128
mse = 0.148
samples = 11
value = 1.775

mse = -0.0
samples = 1

value = 2.765

X[166] <= 0.13
mse = 0.077
samples = 5

value = 2.949

mse = 0.0
samples = 1

value = 1.614

mse = 0.0
samples = 1
value = 0.98

mse = 0.0
samples = 1

value = 0.703

X[572] <= 0.069
mse = 0.001
samples = 2

value = 1.425

mse = -0.0
samples = 1

value = 1.291

mse = 0.0
samples = 1

value = 2.351

X[686] <= 0.003
mse = 0.001
samples = 2
value = 2.2

mse = 0.0
samples = 1

value = 2.039

X[552] <= 0.024
mse = 0.0

samples = 2
value = 2.078

X[366] <= 0.144
mse = 0.008
samples = 7

value = 1.806

X[366] <= 0.125
mse = 0.0

samples = 2
value = 1.616

X[774] <= 0.186
mse = 0.001
samples = 2

value = 1.892

mse = -0.0
samples = 1

value = 1.787

X[244] <= 0.271
mse = 0.001
samples = 3
value = 2.34

mse = 0.0
samples = 1
value = 2.1

X[469] <= 0.152
mse = 0.013
samples = 8

value = -1.451

X[483] <= 0.041
mse = 0.006
samples = 2

value = -1.762

X[699] <= 0.082
mse = 0.0

samples = 2
value = -1.855

mse = 0.0
samples = 1

value = -2.051

mse = 0.0
samples = 1

value = -1.942

mse = -0.0
samples = 1
value = -1.88

mse = 0.0
samples = 1
value = -2.48

mse = -0.0
samples = 1

value = -2.497

mse = 0.0
samples = 1
value = -2.32

mse = 0.0
samples = 1

value = -2.279

X[570] <= 0.137
mse = 0.001
samples = 2

value = -2.751

X[5] <= 0.181
mse = 0.001
samples = 2

value = -2.884

mse = 0.0
samples = 1

value = -2.465

mse = 0.0
samples = 1

value = -2.462

X[66] <= 0.089
mse = 0.185
samples = 69
value = 1.286

X[784] <= 0.06
mse = 0.031
samples = 2

value = 2.547

mse = 0.0
samples = 1

value = 2.784

mse = 0.0
samples = 1

value = 2.713

mse = 0.0
samples = 1

value = 2.162

mse = 0.0
samples = 1

value = 2.212

X[675] <= 0.236
mse = 0.0

samples = 2
value = 2.436

mse = 0.0
samples = 1

value = 2.353

X[440] <= 0.126
mse = 0.004
samples = 4

value = 2.597

X[715] <= 0.074
mse = 0.0

samples = 2
value = 2.382

X[954] <= 0.063
mse = 0.001
samples = 2

value = 2.354

mse = 0.0
samples = 1

value = 2.229

X[82] <= 0.115
mse = 0.002
samples = 8

value = -2.646

mse = -0.0
samples = 1
value = -2.48

mse = 0.0
samples = 1

value = -2.449

mse = 0.0
samples = 1

value = -2.408

X[205] <= 0.131
mse = 0.0

samples = 2
value = -2.381

mse = -0.0
samples = 1

value = -2.278

X[588] <= 0.034
mse = 1.113

samples = 704
value = -0.074

X[360] <= 0.224
mse = 0.21

samples = 36
value = -1.036

X[575] <= 0.147
mse = 0.229
samples = 8

value = 1.011

X[248] <= 0.037
mse = 0.031
samples = 6

value = 2.092

X[362] <= 0.037
mse = 0.362
samples = 29
value = -1.835

X[9] <= 0.027
mse = 0.066
samples = 3

value = 0.938

mse = 0.0
samples = 1

value = 2.725

mse = -0.0
samples = 1

value = 3.021

X[827] <= 0.084
mse = 0.217
samples = 18
value = -1.228

X[462] <= 0.071
mse = 0.04
samples = 3
value = -0.16

X[896] <= 0.08
mse = 0.128
samples = 19
value = -2.042

X[347] <= 0.028
mse = 0.064
samples = 6

value = -1.347

X[890] <= 0.115
mse = 0.092
samples = 2

value = 0.459

mse = 0.0
samples = 1

value = -0.804

X[564] <= 0.113
mse = 0.0

samples = 2
value = 2.207

mse = -0.0
samples = 1

value = 1.754

X[966] <= 0.057
mse = 0.001
samples = 2

value = 3.308

mse = -0.0
samples = 1

value = 3.062

mse = 0.0
samples = 1

value = -3.618

mse = -0.0
samples = 1

value = -3.613

mse = 0.0
samples = 1

value = 1.756

mse = 0.0
samples = 1

value = 1.723

X[509] <= 0.09
mse = 1.009
samples = 68
value = 0.577

X[511] <= 0.365
mse = 0.211
samples = 12
value = 1.857

X[269] <= 0.194
mse = 0.312
samples = 6

value = 2.726

X[731] <= 0.051
mse = 0.019
samples = 2

value = 0.842

mse = 0.0
samples = 1

value = 3.427

mse = 0.0
samples = 1

value = 3.328

mse = 0.0
samples = 1

value = 2.059

X[986] <= 0.096
mse = 0.004
samples = 3
value = 1.38

X[824] <= 0.003
mse = 0.005
samples = 3
value = 2.25

X[34] <= 0.021
mse = 0.0

samples = 3
value = 2.065

mse = 0.0
samples = 1
value = -1.15

mse = -0.0
samples = 1

value = -1.148

X[286] <= 0.142
mse = 0.012
samples = 9

value = 1.763

mse = 0.0
samples = 1

value = 1.433

mse = 0.0
samples = 1

value = 2.072

mse = 0.0
samples = 1

value = 2.078

X[258] <= 0.192
mse = 0.003
samples = 3

value = 1.857

X[838] <= 0.205
mse = 0.012
samples = 4
value = 2.28

mse = 0.0
samples = 1

value = 2.557

mse = -0.0
samples = 1
value = 2.39

mse = 0.0
samples = 1

value = 3.098

mse = 0.0
samples = 1

value = 3.096

X[249] <= 0.049
mse = 0.027
samples = 10
value = -1.513

X[247] <= 0.136
mse = 0.009
samples = 3
value = -1.92

mse = 0.0
samples = 1

value = -2.181

mse = -0.0
samples = 1

value = -2.018

mse = 0.0
samples = 1
value = -2.49

mse = 0.0
samples = 1

value = -2.269

X[449] <= 0.044
mse = 0.001
samples = 2

value = -1.911

mse = -0.0
samples = 1

value = -1.809

X[420] <= 0.066
mse = 0.0

samples = 2
value = -2.489

mse = 0.0
samples = 1

value = -2.618

X[894] <= 0.119
mse = 0.0

samples = 2
value = -2.299

mse = 0.0
samples = 1

value = -2.379

X[263] <= 0.243
mse = 0.005
samples = 4

value = -2.817

mse = 0.0
samples = 1

value = -3.051

X[349] <= 0.13
mse = 0.0

samples = 2
value = -2.464

mse = 0.0
samples = 1

value = -2.804

X[713] <= 0.145
mse = 0.224
samples = 71
value = 1.322

X[703] <= 0.048
mse = 0.001
samples = 2

value = 2.748

X[54] <= 0.004
mse = 0.001
samples = 2

value = 2.187

mse = 0.0
samples = 1

value = 3.123

X[955] <= 0.101
mse = 0.002
samples = 3

value = 2.408

mse = 0.0
samples = 1

value = 2.308

X[696] <= 0.151
mse = 0.013
samples = 6

value = 2.525

X[402] <= 0.19
mse = 0.004
samples = 3

value = 2.313

X[393] <= 0.107
mse = 0.005
samples = 9

value = -2.628

X[621] <= 0.073
mse = 0.0

samples = 2
value = -2.429

X[351] <= 0.069
mse = 0.002
samples = 3

value = -2.347

mse = 0.0
samples = 1

value = -2.506

mse = 0.0
samples = 1

value = -4.593

mse = 0.0
samples = 1
value = -4.6

X[360] <= 0.128
mse = 1.112

samples = 740
value = -0.12

X[581] <= 0.049
mse = 0.431
samples = 14
value = 1.474

X[640] <= 0.039
mse = 0.987
samples = 32
value = -1.575

X[624] <= 0.114
mse = 0.022
samples = 2

value = 2.873

X[328] <= 0.201
mse = 0.331
samples = 21
value = -1.075

X[509] <= 0.044
mse = 0.201
samples = 25
value = -1.875

X[839] <= 0.079
mse = 0.416
samples = 3

value = 0.038

X[83] <= 0.168
mse = 0.046
samples = 3

value = 2.056

X[271] <= 0.267
mse = 0.014
samples = 3

value = 3.226

mse = 0.0
samples = 1

value = 3.828

X[713] <= 0.085
mse = 0.0

samples = 2
value = -3.616

mse = 0.0
samples = 1

value = -3.674

mse = 0.0
samples = 1

value = 1.912

mse = -0.0
samples = 1

value = 1.929

X[112] <= 0.188
mse = 0.0

samples = 2
value = 1.74

mse = 0.0
samples = 1

value = 1.829

mse = 0.0
samples = 1

value = 1.944

mse = -0.0
samples = 1

value = 1.902

X[626] <= 0.221
mse = 1.098
samples = 80
value = 0.769

X[768] <= 0.062
mse = 0.905
samples = 8

value = 2.255

X[621] <= 0.087
mse = 0.002
samples = 2

value = 3.377

mse = 0.0
samples = 1
value = 3.17

mse = 0.0
samples = 1

value = -1.602

mse = 0.0
samples = 1

value = -1.179

X[747] <= 0.125
mse = 0.09
samples = 4
value = 1.55

X[298] <= 0.021
mse = 0.011
samples = 6

value = 2.158

mse = 0.0
samples = 1

value = -0.979

mse = 0.0
samples = 1

value = -0.919

mse = 0.0
samples = 1

value = -1.135

X[88] <= 0.077
mse = 0.0

samples = 2
value = -1.149

mse = 0.0
samples = 1

value = -1.239

mse = 0.0
samples = 1

value = -1.217

mse = 0.0
samples = 1

value = -0.569

mse = -0.0
samples = 1

value = -0.607

X[523] <= 0.127
mse = 0.021
samples = 10
value = 1.73

X[347] <= 0.221
mse = 0.0

samples = 2
value = 2.075

X[449] <= 0.096
mse = 0.052
samples = 7

value = 2.099

X[710] <= 0.19
mse = 0.007
samples = 2

value = 2.474

X[244] <= 0.684
mse = 0.0

samples = 2
value = 3.097

mse = 0.0
samples = 1

value = 2.802

X[993] <= 0.05
mse = 0.052
samples = 13
value = -1.607

X[705] <= 0.13
mse = 0.007
samples = 2
value = -2.1

mse = 0.0
samples = 1
value = -0.75

mse = -0.0
samples = 1

value = -0.902

mse = 0.0
samples = 1

value = -0.909

mse = -0.0
samples = 1

value = -1.167

X[377] <= 0.184
mse = 0.012
samples = 2
value = -2.38

X[745] <= 0.107
mse = 0.003
samples = 3

value = -1.877

X[679] <= 0.138
mse = 0.004
samples = 3

value = -2.532

X[250] <= 0.523
mse = 0.002
samples = 3

value = -2.326

X[209] <= 0.166
mse = 0.013
samples = 5

value = -2.864

X[881] <= 0.197
mse = 0.026
samples = 3

value = -2.577

X[348] <= 0.098
mse = 0.272
samples = 73
value = 1.361

X[352] <= 0.111
mse = 0.195
samples = 3

value = 2.499

mse = 0.0
samples = 1

value = 3.014

mse = 0.0
samples = 1

value = 3.008

X[973] <= 0.126
mse = 0.003
samples = 4

value = 2.383

mse = -0.0
samples = 1

value = 2.718

X[932] <= 0.037
mse = 0.02
samples = 9

value = 2.454

mse = 0.0
samples = 1

value = 2.058

X[327] <= 0.057
mse = 0.01

samples = 11
value = -2.592

X[451] <= 0.095
mse = 0.006
samples = 4

value = -2.386

mse = 0.0
samples = 1

value = -2.374

mse = -0.0
samples = 1

value = -2.209

mse = 0.0
samples = 1

value = -3.068

mse = 0.0
samples = 1
value = -3.17

mse = 0.0
samples = 1

value = -2.977

mse = 0.0
samples = 1

value = -2.897

X[12] <= 0.169
mse = 0.0

samples = 2
value = -4.597

mse = -0.0
samples = 1

value = -4.612

mse = 0.0
samples = 1

value = -4.656

mse = 0.0
samples = 1

value = -4.658

X[643] <= 0.183
mse = 1.145

samples = 754
value = -0.091

X[431] <= 0.235
mse = 2.026
samples = 34
value = -1.313

X[328] <= 0.215
mse = 0.419
samples = 46
value = -1.51

X[328] <= 0.173
mse = 1.249
samples = 6

value = 1.047

mse = 0.0
samples = 1

value = 2.285

X[932] <= 0.31
mse = 0.079
samples = 4

value = 3.377

X[474] <= 0.126
mse = 0.001
samples = 3

value = -3.635

mse = -0.0
samples = 1

value = -3.793

mse = 0.0
samples = 1

value = -3.161

mse = 0.0
samples = 1

value = -3.135

X[923] <= 0.199
mse = 0.0

samples = 2
value = 1.92

X[792] <= 0.197
mse = 0.002
samples = 3

value = 1.769

mse = 0.0
samples = 1

value = 2.001

X[731] <= 0.186
mse = 0.0

samples = 2
value = 1.923

mse = 0.0
samples = 1
value = 2.37

mse = 0.0
samples = 1

value = 2.342

X[658] <= 0.044
mse = 1.263
samples = 88
value = 0.904

X[446] <= 0.079
mse = 0.011
samples = 3

value = 3.308

mse = 0.0
samples = 1

value = -2.152

X[112] <= 0.075
mse = 0.045
samples = 2

value = -1.391

mse = 0.0
samples = 1

value = -1.982

mse = 0.0
samples = 1

value = -2.232

mse = 0.0
samples = 1

value = -1.694

mse = -0.0
samples = 1

value = -1.544

mse = 0.0
samples = 1
value = -1.41

mse = 0.0
samples = 1

value = -1.373

X[209] <= 0.004
mse = 0.131
samples = 10
value = 1.914

mse = -0.0
samples = 1

value = 3.119

mse = 0.0
samples = 1

value = 3.579

mse = -0.0
samples = 1

value = 2.823

mse = 0.0
samples = 1

value = 0.875

mse = -0.0
samples = 1

value = 0.872

mse = 0.0
samples = 1

value = 3.586

mse = 0.0
samples = 1

value = 3.943

X[488] <= 0.051
mse = 0.001
samples = 2

value = -0.949

mse = 0.0
samples = 1

value = -1.042

X[104] <= 0.013
mse = 0.0

samples = 3
value = -1.144

X[291] <= 0.136
mse = 0.0

samples = 2
value = -1.228

mse = 0.0
samples = 1
value = -0.5

X[931] <= 0.049
mse = 0.0

samples = 2
value = -0.588

X[979] <= 0.118
mse = 0.034
samples = 12
value = 1.788

X[437] <= 0.093
mse = 0.066
samples = 9

value = 2.182

mse = 0.0
samples = 1

value = 1.194

mse = -0.0
samples = 1

value = 1.095

X[910] <= 0.122
mse = 0.019
samples = 3

value = 2.999

mse = -0.0
samples = 1

value = 2.568

mse = 0.0
samples = 1

value = -2.804

mse = 0.0
samples = 1

value = -2.815

X[745] <= 0.149
mse = 0.074
samples = 15
value = -1.673

X[245] <= 0.06
mse = 0.006
samples = 2

value = -0.826

X[939] <= 0.016
mse = 0.017
samples = 2

value = -1.038

mse = -0.0
samples = 1

value = -0.647

X[248] <= 0.22
mse = 0.067
samples = 5

value = -2.078

X[892] <= 0.141
mse = 0.013
samples = 6

value = -2.429

mse = 0.0
samples = 1

value = -1.504

mse = -0.0
samples = 1

value = -1.759

X[263] <= 0.313
mse = 0.037
samples = 8

value = -2.756

mse = 0.0
samples = 1

value = -2.323

X[770] <= 0.019
mse = 0.318
samples = 76
value = 1.406

mse = -0.0
samples = 1
value = -1.0

mse = 0.0
samples = 1

value = -0.924

mse = 0.0
samples = 1

value = -0.009

X[203] <= 0.092
mse = 0.0

samples = 2
value = 3.011

mse = -0.0
samples = 1

value = 2.746

X[488] <= 0.054
mse = 0.02
samples = 5
value = 2.45

mse = -0.0
samples = 1

value = 2.894

mse = 0.0
samples = 1

value = 3.714

mse = 0.0
samples = 1

value = 3.363

X[179] <= 0.109
mse = 0.032
samples = 10
value = 2.415

mse = -0.0
samples = 1

value = 1.866

mse = 0.0
samples = 1

value = 3.102

mse = -0.0
samples = 1

value = 2.725

X[449] <= 0.039
mse = 0.017
samples = 15
value = -2.537

X[340] <= 0.128
mse = 0.007
samples = 2

value = -2.292

mse = 0.0
samples = 1

value = -2.897

mse = -0.0
samples = 1
value = -2.74

X[991] <= 0.058
mse = 0.003
samples = 2

value = -3.119

X[800] <= 0.065
mse = 0.002
samples = 2

value = -2.937

mse = 0.0
samples = 1

value = -2.975

mse = -0.0
samples = 1

value = -3.004

mse = 0.0
samples = 1

value = -2.921

mse = 0.0
samples = 1

value = -2.916

mse = 0.0
samples = 1

value = -3.036

mse = 0.0
samples = 1

value = -3.052

X[499] <= 0.231
mse = 0.0

samples = 3
value = -4.602

mse = -0.0
samples = 1

value = -4.563

X[526] <= 0.041
mse = 0.0

samples = 2
value = -4.657

mse = 0.0
samples = 1
value = -4.65

mse = 0.0
samples = 1

value = 4.305

mse = -0.0
samples = 1

value = 4.322

X[263] <= 0.024
mse = 1.245

samples = 788
value = -0.144

X[575] <= 0.115
mse = 1.182
samples = 52
value = -1.215

X[271] <= 0.165
mse = 0.253
samples = 5

value = 3.158

mse = 0.0
samples = 1

value = 1.813

X[126] <= 0.114
mse = 0.005
samples = 4

value = -3.675

X[636] <= 0.09
mse = 0.0

samples = 2
value = -3.148

mse = 0.0
samples = 1
value = -2.09

mse = -0.0
samples = 1

value = -0.639

mse = 0.0
samples = 1
value = 3.96

mse = 0.0
samples = 1

value = 3.913

X[888] <= 0.31
mse = 0.007
samples = 5
value = 1.83

X[888] <= 0.333
mse = 0.002
samples = 3

value = 1.949

X[477] <= 0.147
mse = 0.0

samples = 2
value = 2.356

mse = 0.0
samples = 1

value = 2.448

X[427] <= 0.069
mse = 1.406
samples = 91
value = 0.983

X[126] <= 0.06
mse = 0.158
samples = 3

value = -1.644

X[300] <= 0.057
mse = 0.016
samples = 2

value = -2.107

mse = -0.0
samples = 1

value = -1.308

X[993] <= 0.078
mse = 0.006
samples = 2

value = -1.619

X[16] <= 0.075
mse = 0.0

samples = 2
value = -1.391

X[53] <= 0.076
mse = 0.239
samples = 11
value = 2.024

X[636] <= 0.063
mse = 0.143
samples = 2

value = 3.201

X[265] <= 0.025
mse = 0.0

samples = 2
value = 0.874

mse = 0.0
samples = 1

value = 1.199

X[608] <= 0.09
mse = 0.032
samples = 2

value = 3.764

mse = -0.0
samples = 1

value = 3.132

X[477] <= 0.132
mse = 0.002
samples = 3
value = -0.98

X[477] <= 0.061
mse = 0.002
samples = 5

value = -1.178

mse = 0.0
samples = 1

value = -1.668

mse = -0.0
samples = 1
value = -1.49

X[461] <= 0.053
mse = 0.002
samples = 3

value = -0.559

mse = 0.0
samples = 1

value = -0.835

mse = 0.0
samples = 1

value = 0.033

mse = -0.0
samples = 1

value = 0.105

X[244] <= 0.215
mse = 0.086
samples = 21
value = 1.957

mse = 0.0
samples = 1

value = 3.377

X[959] <= 0.218
mse = 0.002
samples = 2

value = 1.144

mse = 0.0
samples = 1

value = 0.974

X[400] <= 0.14
mse = 0.049
samples = 4

value = 2.891

mse = -0.0
samples = 1

value = 2.469

X[925] <= 0.009
mse = 0.0

samples = 2
value = -2.809

mse = -0.0
samples = 1

value = -2.774

mse = 0.0
samples = 1

value = -2.698

mse = 0.0
samples = 1

value = -2.675

X[648] <= 0.056
mse = 0.141
samples = 17
value = -1.573

X[333] <= 0.176
mse = 0.045
samples = 3

value = -0.908

X[248] <= 0.27
mse = 0.068
samples = 11
value = -2.269

X[57] <= 0.061
mse = 0.016
samples = 2

value = -1.631

mse = 0.0
samples = 1

value = -1.112

mse = 0.0
samples = 1

value = -0.826

mse = 0.0
samples = 1

value = -3.261

mse = 0.0
samples = 1

value = -3.253

mse = 0.0
samples = 1

value = -2.106

X[618] <= 0.197
mse = 0.051
samples = 9

value = -2.708

X[0] <= 0.21
mse = 0.388
samples = 77
value = 1.375

X[352] <= 0.21
mse = 0.209
samples = 2

value = -0.467

X[811] <= 0.129
mse = 0.016
samples = 3

value = 2.923

mse = 0.0
samples = 1

value = 2.187

X[213] <= 0.076
mse = 0.044
samples = 6

value = 2.524

mse = -0.0
samples = 1

value = 1.859

X[384] <= 0.046
mse = 0.031
samples = 2

value = 3.539

mse = 0.0
samples = 1

value = 2.691

X[477] <= 0.185
mse = 0.054
samples = 11
value = 2.365

X[415] <= 0.049
mse = 0.036
samples = 2

value = 2.913

X[860] <= 0.11
mse = 0.022
samples = 17
value = -2.508

X[38] <= 0.032
mse = 0.006
samples = 2

value = -2.819

X[231] <= 0.044
mse = 0.01
samples = 4

value = -3.028

mse = -0.0
samples = 1

value = -2.371

X[456] <= 0.118
mse = 0.0

samples = 2
value = -2.989

X[977] <= 0.032
mse = 0.0

samples = 2
value = -2.918

mse = 0.0
samples = 1
value = -2.29

mse = -0.0
samples = 1

value = -2.278

X[249] <= 0.066
mse = 0.0

samples = 2
value = -3.044

mse = -0.0
samples = 1

value = -2.984

mse = 0.0
samples = 1

value = -3.245

mse = -0.0
samples = 1

value = -3.334

X[88] <= 0.202
mse = 0.0

samples = 4
value = -4.592

X[175] <= 0.01
mse = 0.0

samples = 3
value = -4.655

mse = 0.0
samples = 1

value = -4.766

mse = -0.0
samples = 1

value = -4.706

mse = 0.0
samples = 1

value = 4.365

X[620] <= 0.059
mse = 0.0

samples = 2
value = 4.313

mse = 0.0
samples = 1

value = 4.953

mse = -0.0
samples = 1
value = 4.97

mse = 0.0
samples = 1
value = 4.38

mse = 0.0
samples = 1

value = 4.373

mse = 0.0
samples = 1

value = 4.345

mse = 0.0
samples = 1

value = 4.333

mse = 0.0
samples = 1

value = -3.235

mse = 0.0
samples = 2

value = -3.216

mse = 0.0
samples = 1
value = -3.26

mse = -0.0
samples = 1

value = -3.286

X[328] <= 0.114
mse = 1.308

samples = 840
value = -0.21

X[939] <= 0.113
mse = 0.463
samples = 6

value = 2.934

X[883] <= 0.091
mse = 0.065
samples = 6

value = -3.499

X[227] <= 0.063
mse = 0.527
samples = 2

value = -1.365

X[568] <= 0.043
mse = 0.001
samples = 2

value = 3.937

mse = -0.0
samples = 1

value = 4.758

mse = 0.0
samples = 1

value = 3.219

mse = 0.0
samples = 1

value = 2.451

X[747] <= 0.115
mse = 0.008
samples = 8

value = 1.874

mse = -0.0
samples = 1

value = 1.465

X[9] <= 0.266
mse = 0.002
samples = 3

value = 2.387

mse = -0.0
samples = 1

value = 2.096

mse = 0.0
samples = 1

value = 2.751

mse = 0.0
samples = 2

value = 2.671

X[183] <= 0.058
mse = 1.58

samples = 94
value = 0.899

X[464] <= 0.079
mse = 0.152
samples = 3

value = -1.841

X[827] <= 0.069
mse = 0.016
samples = 4

value = -1.505

mse = 0.0
samples = 1

value = -1.027

X[477] <= 0.134
mse = 0.405
samples = 13
value = 2.205

X[773] <= 0.105
mse = 0.024
samples = 3

value = 0.982

X[375] <= 0.063
mse = 0.11
samples = 3

value = 3.553

mse = -0.0
samples = 1

value = 4.763

X[360] <= 0.253
mse = 0.011
samples = 8

value = -1.104

X[761] <= 0.043
mse = 0.008
samples = 2

value = -1.579

X[387] <= 0.146
mse = 0.016
samples = 4

value = -0.628

X[349] <= 0.086
mse = 0.001
samples = 2

value = 0.069

X[469] <= 0.162
mse = 0.169
samples = 22
value = 2.021

X[526] <= 0.093
mse = 0.008
samples = 3

value = 1.088

X[989] <= 0.209
mse = 0.068
samples = 5

value = 2.806

mse = -0.0
samples = 1

value = 3.569

mse = 0.0
samples = 1

value = -2.895

X[994] <= 0.027
mse = 0.0

samples = 3
value = -2.797

X[619] <= 0.021
mse = 0.0

samples = 2
value = -2.687

mse = 0.0
samples = 1

value = -2.584

X[846] <= 0.016
mse = 0.183
samples = 20
value = -1.473

mse = -0.0
samples = 1

value = -0.111

X[363] <= 0.066
mse = 0.113
samples = 13
value = -2.171

X[963] <= 0.13
mse = 0.02
samples = 2

value = -0.969

mse = 0.0
samples = 1

value = -0.704

mse = 0.0
samples = 1

value = -0.902

mse = 0.0
samples = 1

value = -0.411

mse = 0.0
samples = 1

value = -0.516

mse = 0.0
samples = 1

value = -3.313

mse = 0.0
samples = 1

value = -3.327

X[648] <= 0.043
mse = 0.0

samples = 2
value = -3.257

mse = 0.0
samples = 1

value = -3.238

X[263] <= 0.219
mse = 0.079
samples = 10
value = -2.648

mse = 0.0
samples = 1

value = -2.052

mse = 0.0
samples = 1

value = -3.307

mse = 0.0
samples = 1
value = -3.21

X[437] <= 0.122
mse = 0.467
samples = 79
value = 1.328

X[927] <= 0.113
mse = 0.113
samples = 4

value = 2.739

X[149] <= 0.204
mse = 0.092
samples = 7

value = 2.429

X[488] <= 0.291
mse = 0.18
samples = 3

value = 3.256

mse = 0.0
samples = 1

value = 1.281

mse = 0.0
samples = 1

value = 1.699

X[305] <= 0.344
mse = 0.091
samples = 13
value = 2.449

mse = -0.0
samples = 1

value = 3.255

mse = 0.0
samples = 2

value = 1.671

mse = -0.0
samples = 1

value = 1.371

mse = 0.0
samples = 1

value = 3.053

mse = 0.0
samples = 1

value = 3.203

mse = 0.0
samples = 1
value = 4.0

mse = 0.0
samples = 1

value = 3.965

mse = 0.0
samples = 1

value = 3.866

mse = 0.0
samples = 1

value = 3.815

mse = 0.0
samples = 1

value = 3.666

mse = -0.0
samples = 1

value = 3.656

mse = 0.0
samples = 1

value = -4.824

mse = 0.0
samples = 1

value = -4.836

X[183] <= 0.033
mse = 0.03

samples = 19
value = -2.541

X[888] <= 0.133
mse = 0.077
samples = 5

value = -2.897

X[664] <= 0.021
mse = 0.001
samples = 4

value = -2.954

mse = -0.0
samples = 1

value = -2.823

X[571] <= 0.115
mse = 0.0

samples = 2
value = -2.284

mse = -0.0
samples = 1

value = -2.356

mse = 0.0
samples = 1
value = -2.16

mse = 0.0
samples = 1

value = -2.115

mse = 0.0
samples = 1

value = -3.141

X[142] <= 0.074
mse = 0.001
samples = 3

value = -3.024

mse = 0.0
samples = 1
value = -3.25

mse = 0.0
samples = 1

value = -3.382

mse = 0.0
samples = 1

value = -3.061

mse = -0.0
samples = 1

value = -2.946

mse = 0.0
samples = 1

value = -3.147

X[473] <= 0.011
mse = 0.002
samples = 2

value = -3.289

X[833] <= 0.467
mse = 0.001
samples = 7

value = -4.619

X[773] <= 0.195
mse = 0.001
samples = 2

value = -4.736

mse = 0.0
samples = 1

value = -4.807

mse = 0.0
samples = 1

value = -4.715

mse = 0.0
samples = 1
value = 4.72

mse = -0.0
samples = 1

value = 4.709

mse = 0.0
samples = 1

value = 4.906

mse = -0.0
samples = 1

value = 4.858

X[912] <= 0.004
mse = 0.001
samples = 3
value = 4.33

mse = 0.0
samples = 1

value = 4.244

X[671] <= 0.03
mse = 0.0

samples = 2
value = 4.962

mse = 0.0
samples = 1

value = 4.921

mse = 0.0
samples = 1

value = 4.995

mse = 0.0
samples = 1

value = 5.017

mse = 0.0
samples = 1

value = 4.005

mse = -0.0
samples = 1

value = 4.021

X[185] <= 0.031
mse = 0.0

samples = 2
value = 4.377

X[406] <= 0.06
mse = 0.0

samples = 2
value = 4.339

mse = 0.0
samples = 1

value = 4.184

mse = -0.0
samples = 1
value = 4.21

X[86] <= 0.137
mse = 0.0

samples = 3
value = -3.223

X[82] <= 0.044
mse = 0.0

samples = 2
value = -3.273

mse = 0.0
samples = 1

value = -3.369

mse = 0.0
samples = 1

value = -3.323

mse = 0.0
samples = 1

value = -3.433

mse = 0.0
samples = 1

value = -3.479

mse = 0.0
samples = 1

value = -5.258

mse = 0.0
samples = 1

value = -5.226

mse = 0.0
samples = 1

value = -5.152

mse = -0.0
samples = 1

value = -5.165

mse = 0.0
samples = 1

value = -5.278

mse = 0.0
samples = 1
value = -5.27

X[271] <= 0.104
mse = 1.371

samples = 846
value = -0.188

X[83] <= 0.083
mse = 1.035
samples = 8

value = -2.965

X[150] <= 0.553
mse = 0.15
samples = 3
value = 4.21

X[82] <= 0.107
mse = 0.147
samples = 2

value = 2.835

X[959] <= 0.164
mse = 0.024
samples = 9

value = 1.829

mse = -0.0
samples = 1
value = 1.34

X[419] <= 0.25
mse = 0.017
samples = 4

value = 2.314

X[888] <= 0.836
mse = 0.001
samples = 3

value = 2.698

X[500] <= 0.067
mse = 1.76

samples = 97
value = 0.814

X[696] <= 0.155
mse = 0.049
samples = 5
value = -1.41

X[39] <= 0.025
mse = 0.561
samples = 16
value = 1.976

X[601] <= 0.05
mse = 0.357
samples = 4

value = 3.856

X[958] <= 0.011
mse = 0.047
samples = 10
value = -1.199

X[703] <= 0.048
mse = 0.119
samples = 6

value = -0.395

mse = 0.0
samples = 1

value = 0.392

mse = 0.0
samples = 1

value = 2.049

X[477] <= 0.072
mse = 0.242
samples = 25
value = 1.909

X[870] <= 0.247
mse = 0.137
samples = 6

value = 2.934

X[480] <= 0.013
mse = 0.002
samples = 4

value = -2.822

X[625] <= 0.162
mse = 0.002
samples = 3

value = -2.653

mse = 0.0
samples = 1
value = -3.72

mse = -0.0
samples = 1

value = -3.719

mse = 0.0
samples = 1

value = -3.683

mse = 0.0
samples = 1

value = -3.694

X[205] <= 0.16
mse = 0.258
samples = 21
value = -1.409

X[437] <= 0.132
mse = 0.268
samples = 15
value = -2.011

X[267] <= 0.099
mse = 0.01
samples = 2

value = -0.803

X[779] <= 0.074
mse = 0.003
samples = 2

value = -0.464

X[477] <= 0.051
mse = 0.0

samples = 2
value = -3.32

X[437] <= 0.135
mse = 0.0

samples = 3
value = -3.251

mse = 0.0
samples = 1

value = -3.186

mse = 0.0
samples = 1

value = -3.163

X[780] <= 0.131
mse = 0.101
samples = 11
value = -2.594

mse = -0.0
samples = 1

value = -2.028

X[466] <= 0.187
mse = 0.002
samples = 2

value = -3.259

mse = 0.0
samples = 1

value = -3.008

mse = 0.0
samples = 1

value = -4.526

mse = 0.0
samples = 1
value = -4.55

X[244] <= 0.139
mse = 0.541
samples = 83
value = 1.396

mse = -0.0
samples = 1

value = -1.866

X[626] <= 0.144
mse = 0.262
samples = 10
value = 2.677

X[919] <= 0.03
mse = 0.044
samples = 2
value = 1.49

mse = 0.0
samples = 1
value = -0.73

mse = 0.0
samples = 1

value = -0.708

X[697] <= 0.288
mse = 0.127
samples = 14
value = 2.507

X[384] <= 0.055
mse = 0.02
samples = 3

value = 1.571

mse = 0.0
samples = 1

value = 1.527

mse = 0.0
samples = 1

value = 0.951

X[895] <= 0.095
mse = 0.006
samples = 2

value = 3.128

mse = 0.0
samples = 1

value = 3.565

X[906] <= 0.123
mse = 0.0

samples = 2
value = 3.983

mse = 0.0
samples = 1

value = 4.236

X[189] <= 0.182
mse = 0.001
samples = 2
value = 3.84

X[511] <= 0.004
mse = 0.0

samples = 2
value = 3.661

mse = 0.0
samples = 1

value = 3.894

mse = 0.0
samples = 1

value = 3.918

mse = 0.0
samples = 1

value = 3.754

mse = 0.0
samples = 1
value = 3.73

X[235] <= 0.194
mse = 0.0

samples = 2
value = -4.83

mse = 0.0
samples = 1

value = -4.777

mse = 0.0
samples = 1

value = -4.925

mse = 0.0
samples = 1

value = -4.896

X[515] <= 0.067
mse = 0.061
samples = 24
value = -2.615

X[127] <= 0.043
mse = 0.004
samples = 5

value = -2.928

X[827] <= 0.301
mse = 0.001
samples = 3

value = -2.308

X[870] <= 0.039
mse = 0.001
samples = 2

value = -2.137

X[833] <= 0.111
mse = 0.003
samples = 4

value = -3.054

X[40] <= 0.072
mse = 0.004
samples = 2

value = -3.316

X[602] <= 0.177
mse = 0.003
samples = 2

value = -3.003

X[842] <= 0.012
mse = 0.006
samples = 3

value = -3.242

mse = 0.0
samples = 1
value = -3.64

mse = -0.0
samples = 1

value = -3.553

X[807] <= 0.227
mse = 0.003
samples = 9

value = -4.645

X[896] <= 0.013
mse = 0.002
samples = 2

value = -4.761

X[982] <= 0.039
mse = 0.0

samples = 2
value = 4.715

mse = -0.0
samples = 1

value = 4.646

X[139] <= 0.073
mse = 0.001
samples = 2

value = 4.882

mse = 0.0
samples = 1

value = 4.977

X[681] <= 0.029
mse = 0.002
samples = 4

value = 4.309

mse = -0.0
samples = 1

value = 4.462

X[477] <= 0.041
mse = 0.0

samples = 3
value = 4.948

X[638] <= 0.037
mse = 0.0

samples = 2
value = 5.006

mse = 0.0
samples = 1

value = 5.323

mse = 0.0
samples = 1

value = 5.306

mse = 0.0
samples = 1

value = 5.113

mse = 0.0
samples = 1

value = 5.122

mse = 0.0
samples = 1

value = 4.042

X[490] <= 0.061
mse = 0.0

samples = 2
value = 4.013

mse = 0.0
samples = 1

value = 3.983

mse = 0.0
samples = 1

value = 3.944

mse = 0.0
samples = 1
value = 4.11

mse = -0.0
samples = 1

value = 4.137

X[74] <= 0.051
mse = 0.0

samples = 4
value = 4.358

mse = 0.0
samples = 1

value = 4.507

X[437] <= 0.008
mse = 0.0

samples = 2
value = 4.197

mse = 0.0
samples = 1
value = 4.25

mse = 0.0
samples = 1
value = 5.99

mse = -0.0
samples = 1

value = 5.991

X[480] <= 0.045
mse = 0.001
samples = 5

value = -3.243

X[248] <= 0.047
mse = 0.001
samples = 2

value = -3.346

mse = 0.0
samples = 1

value = -3.358

X[118] <= 0.081
mse = 0.001
samples = 2

value = -3.456

X[689] <= 0.065
mse = 0.0

samples = 2
value = -5.242

mse = -0.0
samples = 1
value = -5.29

X[522] <= 0.114
mse = 0.0

samples = 2
value = -5.159

mse = 0.0
samples = 1
value = -5.11

mse = 0.0
samples = 1

value = -5.395

mse = -0.0
samples = 1

value = -5.395

X[475] <= 0.035
mse = 0.0

samples = 2
value = -5.274

mse = -0.0
samples = 2

value = -5.296

X[156] <= 0.166
mse = 1.44

samples = 854
value = -0.214

X[892] <= 0.063
mse = 0.603
samples = 5
value = 3.66

X[372] <= 0.122
mse = 0.043
samples = 10
value = 1.78

X[888] <= 0.581
mse = 0.047
samples = 7

value = 2.478

X[760] <= 0.141
mse = 1.907

samples = 102
value = 0.705

X[22] <= 0.105
mse = 1.086
samples = 20
value = 2.352

X[626] <= 0.13
mse = 0.225
samples = 16
value = -0.898

X[963] <= 0.076
mse = 0.686
samples = 2

value = 1.221

X[244] <= 0.318
mse = 0.386
samples = 31
value = 2.108

mse = 0.0
samples = 1

value = -0.456

mse = 0.0
samples = 1

value = -0.855

mse = 0.0
samples = 1

value = -1.739

X[878] <= 0.076
mse = 0.009
samples = 7

value = -2.749

mse = 0.0
samples = 1

value = -3.174

mse = 0.0
samples = 1

value = -3.611

mse = -0.0
samples = 1

value = -3.593

X[500] <= 0.11
mse = 0.0

samples = 2
value = -3.72

X[666] <= 0.211
mse = 0.0

samples = 2
value = -3.689

X[248] <= 0.199
mse = 0.35

samples = 36
value = -1.66

X[845] <= 0.035
mse = 0.035
samples = 4

value = -0.633

mse = 0.0
samples = 1

value = 1.001

mse = -0.0
samples = 1

value = -0.313

X[349] <= 0.037
mse = 0.001
samples = 5

value = -3.279

X[558] <= 0.238
mse = 0.0

samples = 2
value = -3.175

X[57] <= 0.131
mse = 0.117
samples = 12
value = -2.547

X[449] <= 0.088
mse = 0.016
samples = 3

value = -3.175

mse = 0.0
samples = 1

value = -3.603

mse = 0.0
samples = 1

value = -3.209

mse = 0.0
samples = 1

value = -4.541

mse = 0.0
samples = 1
value = -4.7

mse = 0.0
samples = 1

value = -4.433

mse = 0.0
samples = 1

value = -4.369

X[434] <= 0.14
mse = 0.0

samples = 2
value = -4.538

mse = -0.0
samples = 1

value = -4.736

mse = 0.0
samples = 1

value = -4.763

mse = 0.0
samples = 1

value = -4.833

X[381] <= 0.11
mse = 0.66

samples = 84
value = 1.357

X[490] <= 0.023
mse = 0.422
samples = 12
value = 2.479

mse = 0.0
samples = 1

value = 3.719

mse = -0.0
samples = 1

value = 4.199

X[664] <= 0.02
mse = 0.0

samples = 2
value = -0.719

mse = 0.0
samples = 1

value = -0.581

mse = 0.0
samples = 1

value = 2.882

mse = -0.0
samples = 1

value = 2.861

mse = 0.0
samples = 1

value = 3.835

mse = 0.0
samples = 1

value = 3.861

X[961] <= 0.022
mse = 0.235
samples = 17
value = 2.342

X[955] <= 0.137
mse = 0.083
samples = 2

value = 1.239

X[422] <= 0.011
mse = 0.046
samples = 3

value = 3.274

mse = -0.0
samples = 1

value = 4.147

X[124] <= 0.034
mse = 0.015
samples = 3

value = 4.067

X[813] <= 0.01
mse = 0.008
samples = 4

value = 3.751

mse = 0.0
samples = 1

value = 3.095

mse = -0.0
samples = 1

value = 3.262

X[204] <= 0.019
mse = 0.0

samples = 2
value = 3.906

mse = -0.0
samples = 1

value = 4.098

mse = 0.0
samples = 1

value = 4.468

mse = -0.0
samples = 1

value = 4.432

mse = 0.0
samples = 1

value = 2.288

mse = -0.0
samples = 1

value = 2.238

X[477] <= 0.04
mse = 0.0

samples = 2
value = 3.742

mse = 0.0
samples = 1

value = 3.829

mse = 0.0
samples = 1

value = 3.625

mse = -0.0
samples = 1
value = 3.46

mse = 0.0
samples = 1

value = 3.943

mse = 0.0
samples = 1

value = 3.944

mse = 0.0
samples = 1

value = 4.513

mse = -0.0
samples = 1

value = 4.524

X[914] <= 0.226
mse = 0.001
samples = 3

value = -4.812

X[350] <= 0.046
mse = 0.0

samples = 2
value = -4.91

mse = 0.0
samples = 1

value = -5.021

mse = 0.0
samples = 1
value = -5.11

mse = 0.0
samples = 1

value = -5.073

mse = 0.0
samples = 1

value = -5.083

X[483] <= 0.035
mse = 0.065
samples = 29
value = -2.669

X[248] <= 0.041
mse = 0.008
samples = 5
value = -2.24

X[211] <= 0.079
mse = 0.019
samples = 6

value = -3.141

mse = -0.0
samples = 1

value = -2.548

X[353] <= 0.009
mse = 0.019
samples = 5

value = -3.146

mse = -0.0
samples = 1

value = -2.595

X[350] <= 0.064
mse = 0.002
samples = 2

value = -3.597

mse = 0.0
samples = 1

value = -3.442

mse = 0.0
samples = 1

value = -3.702

mse = 0.0
samples = 1
value = -3.7

X[833] <= 0.643
mse = 0.005
samples = 11
value = -4.666

mse = 0.0
samples = 1
value = -4.92

X[416] <= 0.029
mse = 0.001
samples = 3

value = 4.692

X[488] <= 0.029
mse = 0.002
samples = 3

value = 4.914

X[610] <= 0.063
mse = 0.005
samples = 5
value = 4.34

mse = 0.0
samples = 1

value = 4.829

mse = 0.0
samples = 1

value = 3.949

mse = 0.0
samples = 1

value = 3.799

X[816] <= 0.038
mse = 0.001
samples = 5

value = 4.971

mse = 0.0
samples = 1

value = 4.827

X[667] <= 0.034
mse = 0.0

samples = 2
value = 5.314

X[150] <= 0.256
mse = 0.0

samples = 2
value = 5.117

mse = 0.0
samples = 1

value = 5.415

mse = 0.0
samples = 1

value = 5.635

X[431] <= 0.176
mse = 0.0

samples = 3
value = 4.023

X[426] <= 0.047
mse = 0.0

samples = 2
value = 3.964

mse = 0.0
samples = 1

value = 4.058

X[748] <= 0.03
mse = 0.0

samples = 2
value = 4.123

mse = 0.0
samples = 1

value = 4.126

mse = -0.0
samples = 1

value = 4.059

X[853] <= 0.133
mse = 0.004
samples = 5

value = 4.388

X[425] <= 0.265
mse = 0.001
samples = 3

value = 4.215

mse = 0.0
samples = 1
value = 4.48

mse = -0.0
samples = 1

value = 4.508

mse = 0.0
samples = 1

value = 5.874

mse = 0.0
samples = 1

value = 5.894

X[994] <= 0.042
mse = 0.0

samples = 2
value = 5.991

mse = 0.0
samples = 1

value = 5.969

X[553] <= 0.156
mse = 0.003
samples = 7

value = -3.272

X[919] <= 0.084
mse = 0.002
samples = 3

value = -3.423

mse = 0.0
samples = 1

value = -3.598

mse = 0.0
samples = 1

value = -3.512

mse = 0.0
samples = 1

value = -3.644

mse = 0.0
samples = 1

value = -3.692

X[416] <= 0.025
mse = 0.001
samples = 3

value = -5.258

X[269] <= 0.14
mse = 0.001
samples = 3

value = -5.142

X[961] <= 0.043
mse = 0.0

samples = 2
value = -5.395

X[888] <= 0.107
mse = 0.0

samples = 4
value = -5.285

X[150] <= 0.188
mse = 1.522

samples = 859
value = -0.191

X[888] <= 0.406
mse = 0.163
samples = 17
value = 2.068

X[747] <= 0.03
mse = 2.144

samples = 122
value = 0.975

X[57] <= 0.107
mse = 0.72

samples = 18
value = -0.662

X[827] <= 0.131
mse = 0.573
samples = 32
value = 2.027

mse = -0.0
samples = 1

value = -0.914

X[951] <= 0.12
mse = 0.195
samples = 2

value = -1.297

mse = 0.0
samples = 1

value = 1.956

X[903] <= 0.045
mse = 0.028
samples = 8

value = -2.802

mse = 0.0
samples = 1

value = -2.254

X[665] <= 0.264
mse = 0.0

samples = 2
value = -3.602

X[958] <= 0.061
mse = 0.0

samples = 4
value = -3.704

X[932] <= 0.025
mse = 0.414
samples = 40
value = -1.557

X[400] <= 0.08
mse = 0.431
samples = 2

value = 0.344

mse = 0.0
samples = 1

value = 0.812

mse = 0.0
samples = 1
value = 0.78

X[477] <= 0.109
mse = 0.003
samples = 7

value = -3.249

mse = 0.0
samples = 1

value = -2.965

X[928] <= 0.293
mse = 0.16

samples = 15
value = -2.672

X[187] <= 0.098
mse = 0.039
samples = 2

value = -3.406

mse = 0.0
samples = 1

value = -3.697

mse = 0.0
samples = 1

value = -4.074

X[40] <= 0.224
mse = 0.006
samples = 2
value = -4.62

mse = -0.0
samples = 1

value = -4.314

mse = 0.0
samples = 1

value = -4.197

X[896] <= 0.042
mse = 0.001
samples = 2

value = -4.401

X[345] <= 0.171
mse = 0.009
samples = 3

value = -4.604

X[471] <= 0.548
mse = 0.001
samples = 2

value = -4.798

X[352] <= 0.27
mse = 0.768
samples = 96
value = 1.497

X[111] <= 0.077
mse = 0.058
samples = 2

value = 3.959

mse = 0.0
samples = 1

value = -1.633

mse = 0.0
samples = 1

value = -1.306

X[280] <= 0.033
mse = 0.004
samples = 3

value = -0.673

mse = 0.0
samples = 1
value = -0.86

mse = 0.0
samples = 1
value = 3.07

X[756] <= 0.035
mse = 0.0

samples = 2
value = 2.872

mse = 0.0
samples = 1

value = 4.778

mse = 0.0
samples = 1

value = 4.777

X[165] <= 0.075
mse = 0.0

samples = 2
value = 3.848

mse = 0.0
samples = 1

value = 3.789

X[679] <= 0.083
mse = 0.334
samples = 19
value = 2.226

X[124] <= 0.083
mse = 0.178
samples = 4

value = 3.492

X[6] <= 0.004
mse = 0.036
samples = 7

value = 3.886

X[527] <= 0.047
mse = 0.007
samples = 2

value = 3.179

X[150] <= 0.039
mse = 0.008
samples = 3
value = 3.97

mse = 0.0
samples = 1

value = 3.576

X[939] <= 0.017
mse = 0.0

samples = 2
value = 4.45

mse = 0.0
samples = 1

value = 4.954

X[400] <= 0.041
mse = 0.001
samples = 2

value = 2.263

mse = 0.0
samples = 1

value = 2.117

mse = 0.0
samples = 1

value = 0.947

mse = -0.0
samples = 1

value = 1.033

X[565] <= 0.102
mse = 0.002
samples = 3

value = 3.771

X[437] <= 0.052
mse = 0.007
samples = 2

value = 3.542

X[996] <= 0.041
mse = 0.0

samples = 2
value = 3.944

mse = 0.0
samples = 1

value = 4.038

mse = 0.0
samples = 1
value = 4.09

mse = 0.0
samples = 1

value = 3.978

X[914] <= 0.082
mse = 0.0

samples = 2
value = 4.519

mse = 0.0
samples = 1

value = 4.414

mse = 0.0
samples = 1

value = -4.111

mse = 0.0
samples = 1

value = -4.093

X[744] <= 0.059
mse = 0.003
samples = 5

value = -4.852

X[715] <= 0.027
mse = 0.002
samples = 2

value = -5.065

X[252] <= 0.243
mse = 0.0

samples = 2
value = -5.078

mse = -0.0
samples = 1

value = -5.038

X[932] <= 0.085
mse = 0.079
samples = 34
value = -2.606

X[547] <= 0.067
mse = 0.059
samples = 7

value = -3.056

X[492] <= 0.144
mse = 0.058
samples = 6

value = -3.055

X[884] <= 0.053
mse = 0.007
samples = 3

value = -3.545

X[477] <= 0.104
mse = 0.0

samples = 2
value = -3.701

mse = 0.0
samples = 1

value = -3.675

X[209] <= 0.261
mse = 0.01

samples = 12
value = -4.687

mse = -0.0
samples = 1

value = -4.931

mse = 0.0
samples = 1

value = -4.473

mse = 0.0
samples = 1

value = -4.468

X[440] <= 0.295
mse = 0.014
samples = 6

value = 4.803

X[442] <= 0.165
mse = 0.038
samples = 6

value = 4.421

X[582] <= 0.078
mse = 0.006
samples = 2

value = 3.874

mse = 0.0
samples = 1

value = 4.395

mse = 0.0
samples = 1
value = 5.01

mse = 0.0
samples = 2

value = 5.114

mse = 0.0
samples = 1

value = 4.036

mse = -0.0
samples = 1

value = 4.017

mse = 0.0
samples = 1

value = 4.093

mse = 0.0
samples = 1

value = 4.072

X[889] <= 0.047
mse = 0.004
samples = 6

value = 4.947

mse = -0.0
samples = 1

value = 5.164

X[477] <= 0.02
mse = 0.01
samples = 4

value = 5.216

X[323] <= 0.048
mse = 0.012
samples = 2

value = 5.525

mse = 0.0
samples = 1

value = 5.615

mse = -0.0
samples = 1

value = 5.581

X[896] <= 0.015
mse = 0.001
samples = 5

value = 3.999

X[430] <= 0.031
mse = 0.001
samples = 3

value = 4.102

mse = 0.0
samples = 1

value = 4.211

mse = 0.0
samples = 1

value = 4.401

X[319] <= 0.057
mse = 0.001
samples = 2

value = 4.093

X[425] <= 0.223
mse = 0.01
samples = 8

value = 4.323

X[940] <= 0.032
mse = 0.0

samples = 2
value = 4.494

mse = 0.0
samples = 1

value = 4.629

X[785] <= 0.071
mse = 0.0

samples = 2
value = 5.884

mse = 0.0
samples = 2

value = 5.836

mse = 0.0
samples = 1

value = 6.008

mse = -0.0
samples = 1

value = 5.941

X[431] <= 0.062
mse = 0.0

samples = 3
value = 5.984

mse = 0.0
samples = 1

value = 6.018

X[961] <= 0.072
mse = 0.008
samples = 10
value = -3.318

X[572] <= 0.023
mse = 0.002
samples = 2

value = -3.555

mse = 0.0
samples = 2

value = -3.078

mse = 0.0
samples = 1

value = -3.183

mse = 0.0
samples = 1

value = -3.663

mse = 0.0
samples = 1

value = -3.655

X[536] <= 0.141
mse = 0.001
samples = 2

value = -3.668

mse = -0.0
samples = 1

value = -3.802

mse = 0.0
samples = 1

value = -3.983

mse = -0.0
samples = 1

value = -3.999

X[86] <= 0.434
mse = 0.004
samples = 6
value = -5.2

X[349] <= 0.087
mse = 0.003
samples = 6

value = -5.322

X[888] <= 0.242
mse = 1.593

samples = 876
value = -0.147

X[360] <= 0.042
mse = 2.261

samples = 140
value = 0.765

X[341] <= 0.172
mse = 0.809
samples = 33
value = 1.938

X[953] <= 0.155
mse = 2.481
samples = 3

value = -0.213

X[391] <= 0.101
mse = 0.054
samples = 9

value = -2.741

X[665] <= 0.292
mse = 0.003
samples = 6
value = -3.67

X[962] <= 0.126
mse = 0.578
samples = 42
value = -1.466

X[184] <= 0.083
mse = 0.0

samples = 2
value = 0.796

mse = 0.0
samples = 1

value = 1.155

mse = -0.0
samples = 1
value = 1.42

X[875] <= 0.055
mse = 0.012
samples = 8

value = -3.213

mse = 0.0
samples = 1

value = -2.819

X[249] <= 0.093
mse = 0.202
samples = 17
value = -2.759

mse = 0.0
samples = 1
value = -3.91

X[509] <= 0.101
mse = 0.036
samples = 2

value = -3.886

X[226] <= 0.332
mse = 0.025
samples = 3

value = -4.518

X[505] <= 0.368
mse = 0.01
samples = 3

value = -4.333

X[471] <= 0.489
mse = 0.015
samples = 5

value = -4.681

X[273] <= 0.045
mse = 0.875
samples = 98
value = 1.548

mse = -0.0
samples = 1

value = -2.295

X[465] <= 0.089
mse = 0.027
samples = 2
value = -1.47

mse = 0.0
samples = 1

value = -2.096

X[453] <= 0.103
mse = 0.01
samples = 4
value = -0.72

mse = -0.0
samples = 1

value = -0.317

mse = 0.0
samples = 1

value = -1.154

mse = -0.0
samples = 1

value = -1.247

X[892] <= 0.043
mse = 0.009
samples = 3

value = 2.938

mse = 0.0
samples = 1

value = 3.639

X[180] <= 0.022
mse = 0.0

samples = 2
value = 4.778

mse = -0.0
samples = 1

value = 4.786

mse = 0.0
samples = 1

value = 4.295

mse = 0.0
samples = 1

value = 4.289

X[223] <= 0.025
mse = 0.001
samples = 3

value = 3.829

mse = 0.0
samples = 1
value = 3.99

mse = 0.0
samples = 1

value = 3.343

mse = -0.0
samples = 1

value = 3.607

X[862] <= 0.01
mse = 0.537
samples = 23
value = 2.446

X[437] <= 0.061
mse = 0.116
samples = 9

value = 3.729

X[271] <= 0.438
mse = 0.035
samples = 4

value = 3.872

X[703] <= 0.076
mse = 0.057
samples = 3

value = 4.618

mse = 0.0
samples = 1

value = 1.776

X[197] <= 0.082
mse = 0.005
samples = 3

value = 2.214

mse = 0.0
samples = 1

value = 0.751

X[394] <= 0.136
mse = 0.002
samples = 2
value = 0.99

X[631] <= 0.053
mse = 0.016
samples = 5
value = 3.68

X[930] <= 0.044
mse = 0.002
samples = 3

value = 3.975

X[628] <= 0.013
mse = 0.003
samples = 2

value = 4.034

mse = 0.0
samples = 1

value = 4.247

X[404] <= 0.088
mse = 0.002
samples = 3

value = 4.484

mse = 0.0
samples = 1

value = 4.766

mse = 0.0
samples = 1

value = 4.292

mse = -0.0
samples = 1

value = 4.141

X[284] <= 0.117
mse = 0.0

samples = 2
value = -4.102

mse = -0.0
samples = 1

value = -4.165

X[482] <= 0.126
mse = 0.012
samples = 7

value = -4.913

X[477] <= 0.061
mse = 0.0

samples = 3
value = -5.065

mse = 0.0
samples = 1

value = -5.229

mse = 0.0
samples = 1

value = -5.115

mse = 0.0
samples = 1
value = -5.69

mse = 0.0
samples = 1

value = -5.688

X[559] <= 0.149
mse = 0.105
samples = 41
value = -2.683

mse = -0.0
samples = 1
value = -4.08

X[449] <= 0.048
mse = 0.094
samples = 9

value = -3.218

mse = -0.0
samples = 1

value = -2.454

X[548] <= 0.022
mse = 0.0

samples = 3
value = -3.692

mse = -0.0
samples = 1

value = -3.956

mse = 0.0
samples = 1

value = -3.717

mse = 0.0
samples = 1

value = -3.719

X[466] <= 0.007
mse = 0.013
samples = 13
value = -4.706

X[807] <= 0.175
mse = 0.0

samples = 2
value = -4.471

X[248] <= 0.01
mse = 0.062
samples = 12
value = 4.612

X[537] <= 0.179
mse = 0.064
samples = 3

value = 4.048

X[12] <= 0.05
mse = 0.002
samples = 3

value = 5.079

mse = 0.0
samples = 1

value = 4.875

X[450] <= 0.137
mse = 0.0

samples = 2
value = 4.027

X[271] <= 0.058
mse = 0.0

samples = 2
value = 4.083

mse = 0.0
samples = 1

value = 5.185

mse = 0.0
samples = 1

value = 5.045

X[264] <= 0.055
mse = 0.009
samples = 7

value = 4.978

X[812] <= 0.017
mse = 0.032
samples = 6

value = 5.319

mse = 0.0
samples = 1
value = 4.71

mse = -0.0
samples = 1
value = 4.45

mse = 0.0
samples = 1

value = 5.367

mse = 0.0
samples = 1
value = 5.45

mse = 0.0
samples = 1

value = 5.665

X[811] <= 0.033
mse = 0.0

samples = 2
value = 5.598

mse = 0.0
samples = 1

value = 5.766

mse = -0.0
samples = 1

value = 5.815

X[967] <= 0.037
mse = 0.004
samples = 8

value = 4.037

X[787] <= 0.063
mse = 0.009
samples = 2

value = 4.306

mse = 0.0
samples = 1

value = 3.845

mse = -0.0
samples = 1

value = 3.635

X[425] <= 0.198
mse = 0.016
samples = 10
value = 4.277

X[212] <= 0.062
mse = 0.004
samples = 3

value = 4.539

mse = 0.0
samples = 1
value = 4.64

mse = 0.0
samples = 1

value = 4.714

X[425] <= 0.642
mse = 0.001
samples = 4
value = 5.86

X[473] <= 0.034
mse = 0.001
samples = 2

value = 5.974

X[208] <= 0.138
mse = 0.0

samples = 4
value = 5.992

mse = 0.0
samples = 1

value = 6.118

mse = 0.0
samples = 1

value = 5.811

mse = 0.0
samples = 1

value = 5.787

mse = 0.0
samples = 1

value = 5.847

mse = -0.0
samples = 1

value = 5.822

X[746] <= 0.137
mse = 0.014
samples = 12
value = -3.357

X[120] <= 0.233
mse = 0.002
samples = 3

value = -3.113

mse = 0.0
samples = 1
value = -3.41

X[390] <= 0.089
mse = 0.0

samples = 2
value = -3.659

X[731] <= 0.159
mse = 0.004
samples = 3

value = -3.713

mse = 0.0
samples = 1

value = -3.897

mse = 0.0
samples = 1

value = -3.913

mse = 0.0
samples = 1

value = -3.945

X[961] <= 0.047
mse = 0.0

samples = 2
value = -3.991

mse = -0.0
samples = 1

value = -4.046

X[449] <= 0.023
mse = 0.007
samples = 12
value = -5.261

mse = 0.0
samples = 1

value = -5.002

mse = 0.0
samples = 1

value = -5.054

mse = 0.0
samples = 1

value = -4.992

mse = 0.0
samples = 1

value = -5.457

mse = 0.0
samples = 1

value = -5.361

X[626] <= 0.057
mse = 1.783

samples = 1016
value = -0.022

X[245] <= 0.041
mse = 1.302
samples = 36
value = 1.759

X[627] <= 0.261
mse = 0.241
samples = 15
value = -3.113

mse = 0.0
samples = 1

value = 0.432

X[653] <= 0.079
mse = 0.774
samples = 44
value = -1.364

X[826] <= 0.051
mse = 0.018
samples = 2

value = 1.288

X[849] <= 0.189
mse = 0.026
samples = 9
value = -3.17

mse = -0.0
samples = 1

value = -2.252

X[243] <= 0.34
mse = 0.26

samples = 18
value = -2.823

X[263] <= 0.498
mse = 0.125
samples = 5

value = -4.265

X[471] <= 0.207
mse = 0.041
samples = 8

value = -4.551

mse = -0.0
samples = 1

value = -2.652

X[982] <= 0.204
mse = 1.013
samples = 99
value = 1.509

X[638] <= 0.097
mse = 0.105
samples = 3

value = -1.678

X[157] <= 0.074
mse = 0.034
samples = 5

value = -0.639

X[716] <= 0.058
mse = 0.002
samples = 2

value = -1.201

X[291] <= 0.009
mse = 0.099
samples = 4

value = 3.113

mse = 0.0
samples = 1

value = 1.524

X[785] <= 0.039
mse = 0.0

samples = 3
value = 4.78

mse = 0.0
samples = 1

value = 4.737

X[277] <= 0.137
mse = 0.0

samples = 2
value = 4.292

mse = -0.0
samples = 1

value = 4.933

X[715] <= 0.099
mse = 0.006
samples = 4

value = 3.869

X[248] <= 0.027
mse = 0.017
samples = 2

value = 3.475

X[442] <= 0.038
mse = 0.752
samples = 32
value = 2.807

X[402] <= 0.022
mse = 0.181
samples = 7

value = 4.191

X[630] <= 0.16
mse = 0.04
samples = 4

value = 2.105

X[263] <= 0.144
mse = 0.014
samples = 3
value = 0.91

X[291] <= 0.037
mse = 0.031
samples = 8
value = 3.79

X[680] <= 0.015
mse = 0.012
samples = 3

value = 4.105

X[870] <= 0.015
mse = 0.017
samples = 4

value = 4.554

X[787] <= 0.06
mse = 0.006
samples = 2

value = 4.217

mse = 0.0
samples = 1

value = 0.428

mse = -0.0
samples = 1

value = 0.257

X[991] <= 0.128
mse = 0.001
samples = 3

value = -4.123

mse = -0.0
samples = 1

value = -4.033

mse = 0.0
samples = 1

value = -3.618

mse = 0.0
samples = 1

value = -3.783

mse = 0.0
samples = 1

value = -4.412

mse = 0.0
samples = 1

value = -4.457

X[188] <= 0.089
mse = 0.013
samples = 10
value = -4.958

X[359] <= 0.236
mse = 0.003
samples = 2

value = -5.172

X[561] <= 0.093
mse = 0.0

samples = 2
value = -5.689

mse = -0.0
samples = 1

value = -5.643

X[503] <= 0.183
mse = 0.148
samples = 42
value = -2.716

mse = -0.0
samples = 1

value = -1.114

X[81] <= 0.142
mse = 0.137
samples = 10
value = -3.142

X[412] <= 0.029
mse = 0.013
samples = 4

value = -3.758

mse = 0.0
samples = 1

value = -3.278

mse = 0.0
samples = 1

value = -3.226

mse = 0.0
samples = 1

value = -3.821

X[45] <= 0.05
mse = 0.0

samples = 2
value = -3.718

X[211] <= 0.204
mse = 0.018
samples = 15
value = -4.675

mse = 0.0
samples = 1

value = -4.314

mse = 0.0
samples = 1

value = -4.392

mse = 0.0
samples = 1

value = -4.155

mse = 0.0
samples = 1

value = -3.845

mse = 0.0
samples = 1

value = -4.009

mse = 0.0
samples = 1

value = -4.287

mse = -0.0
samples = 1

value = -4.101

X[18] <= 0.126
mse = 0.114
samples = 15
value = 4.499

X[65] <= 0.037
mse = 0.01
samples = 4

value = 5.028

mse = 0.0
samples = 1
value = 3.49

mse = 0.0
samples = 1

value = 4.053

mse = 0.0
samples = 1
value = 3.25

mse = 0.0
samples = 1

value = 3.131

X[669] <= 0.062
mse = 0.001
samples = 4

value = 4.055

X[136] <= 0.211
mse = 0.005
samples = 2

value = 5.115

X[136] <= 0.146
mse = 0.048
samples = 13
value = 5.135

X[18] <= 0.023
mse = 0.017
samples = 2
value = 4.58

X[111] <= 0.062
mse = 0.002
samples = 2

value = 5.409

mse = -0.0
samples = 1

value = 5.154

X[982] <= 0.041
mse = 0.001
samples = 3
value = 5.62

X[894] <= 0.049
mse = 0.001
samples = 2
value = 5.79

mse = 0.0
samples = 1

value = 5.685

mse = 0.0
samples = 1

value = 5.687

mse = 0.0
samples = 1

value = 5.586

mse = 0.0
samples = 1

value = 5.582

mse = 0.0
samples = 1

value = 6.428

mse = -0.0
samples = 1

value = 6.426

X[359] <= 0.033
mse = 0.016
samples = 10
value = 4.091

X[932] <= 0.011
mse = 0.011
samples = 2
value = 3.74

mse = 0.0
samples = 2

value = 3.394

mse = 0.0
samples = 1

value = 4.068

X[116] <= 0.052
mse = 0.026
samples = 13
value = 4.337

X[398] <= 0.049
mse = 0.001
samples = 2

value = 4.677

mse = 0.0
samples = 1
value = 4.03

mse = 0.0
samples = 1
value = 3.58

X[679] <= 0.028
mse = 0.004
samples = 6

value = 5.898

X[933] <= 0.038
mse = 0.003
samples = 5

value = 6.017

X[527] <= 0.031
mse = 0.0

samples = 2
value = 5.799

X[912] <= 0.102
mse = 0.0

samples = 2
value = 5.834

mse = 0.0
samples = 1

value = 6.148

mse = -0.0
samples = 1

value = 6.161

X[246] <= 0.096
mse = 0.022
samples = 15
value = -3.308

X[437] <= 0.056
mse = 0.014
samples = 3

value = -3.576

mse = 0.0
samples = 1

value = -2.845

mse = 0.0
samples = 1

value = -2.996

X[337] <= 0.143
mse = 0.01
samples = 4

value = -3.759

X[347] <= 0.228
mse = 0.0

samples = 2
value = -3.929

X[867] <= 0.134
mse = 0.001
samples = 3

value = -4.009

mse = 0.0
samples = 1

value = -4.167

X[248] <= 0.146
mse = 0.011
samples = 13
value = -5.241

X[604] <= 0.064
mse = 0.001
samples = 2

value = -5.023

X[958] <= 0.052
mse = 0.002
samples = 2

value = -5.409

mse = -0.0
samples = 1

value = -5.569

mse = 0.0
samples = 1

value = -5.728

mse = 0.0
samples = 1

value = -5.717

X[244] <= 0.174
mse = 1.872

samples = 1052
value = 0.039

X[230] <= 0.091
mse = 0.962
samples = 16
value = -2.891

X[717] <= 0.047
mse = 1.034
samples = 46
value = -1.248

X[608] <= 0.231
mse = 0.099
samples = 10
value = -3.078

X[263] <= 0.425
mse = 0.585
samples = 23
value = -3.136

X[642] <= 0.163
mse = 0.393
samples = 9
value = -4.34

X[458] <= 0.119
mse = 1.277

samples = 102
value = 1.415

X[611] <= 0.095
mse = 0.089
samples = 7
value = -0.8

X[930] <= 0.026
mse = 0.483
samples = 5

value = 2.795

X[97] <= 0.025
mse = 0.0

samples = 4
value = 4.769

X[83] <= 0.043
mse = 0.091
samples = 3

value = 4.506

X[679] <= 0.03
mse = 0.044
samples = 6

value = 3.738

X[271] <= 0.152
mse = 0.931
samples = 39
value = 3.055

X[6] <= 0.011
mse = 0.378
samples = 7

value = 1.593

X[953] <= 0.01
mse = 0.046
samples = 11
value = 3.876

X[188] <= 0.066
mse = 0.038
samples = 6

value = 4.442

mse = 0.0
samples = 1

value = -0.766

X[483] <= 0.019
mse = 0.007
samples = 2

value = 0.343

mse = 0.0
samples = 1

value = 1.586

mse = 0.0
samples = 1

value = 1.703

X[519] <= 0.155
mse = 0.002
samples = 4
value = -4.1

mse = 0.0
samples = 1

value = -4.245

X[156] <= 0.259
mse = 0.007
samples = 2
value = -3.7

mse = -0.0
samples = 1

value = -4.036

X[802] <= 0.018
mse = 0.0

samples = 2
value = -4.435

mse = 0.0
samples = 1
value = -4.52

X[432] <= 0.278
mse = 0.018
samples = 12
value = -4.994

mse = -0.0
samples = 1

value = -5.299

mse = 0.0
samples = 1

value = -5.466

mse = 0.0
samples = 1

value = -5.549

X[156] <= 0.563
mse = 0.0

samples = 3
value = -5.674

mse = 0.0
samples = 1

value = -5.754

X[816] <= 0.071
mse = 0.203
samples = 43
value = -2.679

X[761] <= 0.019
mse = 0.179
samples = 14
value = -3.318

mse = 0.0
samples = 1

value = -3.453

X[561] <= 0.104
mse = 0.001
samples = 2

value = -3.252

mse = 0.0
samples = 1

value = -3.943

X[477] <= 0.056
mse = 0.002
samples = 3

value = -3.753

X[126] <= 0.16
mse = 0.024
samples = 16
value = -4.652

X[263] <= 0.061
mse = 0.014
samples = 2

value = -4.274

X[363] <= 0.043
mse = 0.007
samples = 2

value = -3.927

X[639] <= 0.079
mse = 0.009
samples = 2

value = -4.194

mse = 0.0
samples = 1

value = -3.933

mse = 0.0
samples = 1

value = -3.649

X[1] <= 0.032
mse = 0.138
samples = 19
value = 4.611

X[244] <= 0.088
mse = 0.079
samples = 2

value = 3.772

mse = 0.0
samples = 1

value = 3.017

mse = 0.0
samples = 1

value = 3.058

X[188] <= 0.118
mse = 0.004
samples = 2

value = 3.191

mse = 0.0
samples = 1

value = 3.446

X[150] <= 0.226
mse = 0.252
samples = 6

value = 4.408

X[419] <= 0.022
mse = 0.08

samples = 15
value = 5.061

X[369] <= 0.232
mse = 0.016
samples = 3

value = 5.324

X[151] <= 0.295
mse = 0.008
samples = 5

value = 5.688

mse = 0.0
samples = 1

value = 3.139

mse = 0.0
samples = 1

value = 3.512

X[844] <= 0.011
mse = 0.0

samples = 2
value = 5.686

X[572] <= 0.047
mse = 0.0

samples = 2
value = 5.584

mse = 0.0
samples = 1

value = 6.423

X[459] <= 0.175
mse = 0.0

samples = 2
value = 6.427

X[653] <= 0.048
mse = 0.032
samples = 12
value = 4.033

X[976] <= 0.08
mse = 0.101
samples = 3

value = 3.619

X[624] <= 0.243
mse = 0.036
samples = 15
value = 4.383

X[307] <= 0.15
mse = 0.051
samples = 2

value = 3.805

mse = 0.0
samples = 1

value = 4.103

mse = 0.0
samples = 1

value = 4.097

X[956] <= 0.024
mse = 0.007
samples = 11
value = 5.952

X[846] <= 0.029
mse = 0.0

samples = 4
value = 5.817

mse = 0.0
samples = 1
value = 6.33

X[68] <= 0.02
mse = 0.0

samples = 2
value = 6.155

mse = 0.0
samples = 1
value = 5.53

mse = -0.0
samples = 1

value = 5.547

X[243] <= 0.149
mse = 0.03

samples = 18
value = -3.353

X[572] <= 0.059
mse = 0.006
samples = 2

value = -2.921

mse = 0.0
samples = 1

value = -2.826

mse = 0.0
samples = 1

value = -2.979

mse = 0.0
samples = 1

value = -2.703

mse = -0.0
samples = 1

value = -2.819

X[347] <= 0.108
mse = 0.013
samples = 6

value = -3.815

X[322] <= 0.065
mse = 0.005
samples = 4

value = -4.049

mse = 0.0
samples = 1

value = -4.243

mse = 0.0
samples = 1
value = -4.25

mse = 0.0
samples = 1

value = -4.303

mse = 0.0
samples = 1

value = -4.322

X[81] <= 0.06
mse = 0.015
samples = 15
value = -5.212

X[529] <= 0.048
mse = 0.007
samples = 3

value = -5.462

mse = 0.0
samples = 1

value = -5.564

mse = 0.0
samples = 1

value = -5.623

X[86] <= 0.562
mse = 0.0

samples = 2
value = -5.722

mse = 0.0
samples = 1

value = -5.743

mse = 0.0
samples = 1

value = -5.659

mse = 0.0
samples = 1

value = -5.691

X[665] <= 0.094
mse = 1.985

samples = 1068
value = -0.005

X[449] <= 0.189
mse = 1.358
samples = 56
value = -1.575

X[505] <= 0.124
mse = 0.824
samples = 32
value = -3.475

mse = -0.0
samples = 1

value = 2.196

X[360] <= 0.157
mse = 1.495

samples = 109
value = 1.273

X[847] <= 0.026
mse = 1.231
samples = 9

value = 3.673

X[784] <= 0.03
mse = 0.191
samples = 9

value = 3.994

mse = 0.0
samples = 1

value = 2.248

X[263] <= 0.063
mse = 1.123
samples = 46
value = 2.833

X[440] <= 0.494
mse = 0.116
samples = 17
value = 4.076

X[349] <= 0.031
mse = 0.278
samples = 3

value = -0.027

X[563] <= 0.002
mse = 0.003
samples = 2

value = 1.644

mse = 0.0
samples = 1

value = -2.603

mse = 0.0
samples = 1

value = -2.825

mse = 0.0
samples = 1

value = -0.488

mse = 0.0
samples = 1
value = -1.37

X[864] <= 0.142
mse = 0.005
samples = 5

value = -4.129

X[359] <= 0.14
mse = 0.03
samples = 3

value = -3.812

X[156] <= 0.312
mse = 0.002
samples = 3

value = -4.463

mse = 0.0
samples = 1

value = -4.169

X[898] <= 0.187
mse = 0.023
samples = 13
value = -5.017

mse = -0.0
samples = 1

value = -4.681

X[979] <= 0.064
mse = 0.002
samples = 2

value = -5.507

X[206] <= 0.402
mse = 0.002
samples = 4

value = -5.694

X[833] <= 0.257
mse = 0.272
samples = 57
value = -2.836

mse = 0.0
samples = 1

value = -5.112

mse = 0.0
samples = 1

value = -1.383

mse = -0.0
samples = 1

value = -1.398

X[253] <= 0.034
mse = 0.009
samples = 3

value = -3.319

X[477] <= 0.026
mse = 0.009
samples = 4
value = -3.8

mse = 0.0
samples = 1

value = -4.281

mse = 0.0
samples = 1

value = -4.165

X[477] <= 0.115
mse = 0.037
samples = 18
value = -4.61

X[774] <= 0.024
mse = 0.025
samples = 4
value = -4.06

X[235] <= 0.107
mse = 0.02
samples = 2

value = -3.791

mse = 0.0
samples = 1

value = -3.176

X[137] <= 0.232
mse = 0.193
samples = 21
value = 4.531

X[630] <= 0.073
mse = 0.0

samples = 2
value = 3.037

mse = 0.0
samples = 1

value = 2.388

mse = -0.0
samples = 1
value = 3.48

X[18] <= 0.146
mse = 0.017
samples = 3

value = 3.276

mse = -0.0
samples = 1

value = 2.744

X[440] <= 0.019
mse = 0.216
samples = 21
value = 4.875

X[151] <= 0.141
mse = 0.042
samples = 8

value = 5.552

X[976] <= 0.079
mse = 0.035
samples = 2

value = 3.326

mse = 0.0
samples = 1
value = 4.25

X[437] <= 0.01
mse = 0.003
samples = 4

value = 5.635

mse = -0.0
samples = 1

value = 5.963

mse = 0.0
samples = 1

value = 6.416

X[151] <= 0.146
mse = 0.0

samples = 3
value = 6.426

X[562] <= 0.11
mse = 0.074
samples = 15
value = 3.95

X[149] <= 0.127
mse = 0.072
samples = 17
value = 4.315

mse = 0.0
samples = 1
value = 3.11

mse = -0.0
samples = 1

value = 3.373

X[498] <= 0.06
mse = 0.0

samples = 2
value = 4.1

mse = -0.0
samples = 1
value = 4.25

mse = 0.0
samples = 1

value = 5.064

mse = 0.0
samples = 1

value = 5.018

mse = 0.0
samples = 1

value = 4.716

mse = 0.0
samples = 1

value = 4.885

mse = 0.0
samples = 1

value = 5.769

mse = 0.0
samples = 1

value = 5.741

X[761] <= 0.043
mse = 0.009
samples = 15
value = 5.916

X[961] <= 0.021
mse = 0.007
samples = 3

value = 6.213

X[861] <= 0.073
mse = 0.0

samples = 2
value = 5.539

mse = 0.0
samples = 1

value = 5.408

mse = 0.0
samples = 1

value = 5.332

mse = 0.0
samples = 1

value = 5.376

X[190] <= 0.179
mse = 0.045
samples = 20
value = -3.31

X[860] <= 0.165
mse = 0.006
samples = 2

value = -2.903

X[617] <= 0.099
mse = 0.003
samples = 2

value = -2.761

mse = 0.0
samples = 1
value = -3.01

mse = 0.0
samples = 1
value = -4.2

mse = -0.0
samples = 1

value = -4.154

X[437] <= 0.037
mse = 0.023
samples = 10
value = -3.909

X[171] <= 0.074
mse = 0.0

samples = 2
value = -4.247

X[914] <= 0.11
mse = 0.0

samples = 2
value = -4.312

mse = 0.0
samples = 1

value = -4.196

X[383] <= 0.062
mse = 0.023
samples = 18
value = -5.254

X[919] <= 0.08
mse = 0.001
samples = 2

value = -5.594

mse = 0.0
samples = 1

value = -5.564

mse = 0.0
samples = 1

value = -5.429

X[745] <= 0.106
mse = 0.0

samples = 3
value = -5.729

X[597] <= 0.071
mse = 0.0

samples = 2
value = -5.675

X[248] <= 0.15
mse = 2.07

samples = 1124
value = -0.083

X[4] <= 0.156
mse = 1.744
samples = 33
value = -3.303

X[22] <= 0.012
mse = 1.881

samples = 118
value = 1.456

X[616] <= 0.075
mse = 0.446
samples = 10
value = 3.819

X[440] <= 0.305
mse = 1.156
samples = 63
value = 3.168

X[209] <= 0.002
mse = 0.838
samples = 5

value = 0.642

X[446] <= 0.125
mse = 0.012
samples = 2

value = -2.714

X[549] <= 0.076
mse = 0.194
samples = 2

value = -0.929

X[156] <= 0.244
mse = 0.038
samples = 8
value = -4.01

X[727] <= 0.097
mse = 0.018
samples = 4
value = -4.39

X[525] <= 0.216
mse = 0.029
samples = 14
value = -4.993

mse = -0.0
samples = 1

value = -4.086

X[156] <= 0.518
mse = 0.009
samples = 6

value = -5.632

mse = 0.0
samples = 1

value = -5.944

X[263] <= 0.539
mse = 0.356
samples = 58
value = -2.875

mse = 0.0
samples = 1

value = -5.883

mse = 0.0
samples = 1

value = 0.356

X[961] <= 0.146
mse = 0.0

samples = 2
value = -1.39

X[559] <= 0.099
mse = 0.066
samples = 7

value = -3.594

X[572] <= 0.015
mse = 0.003
samples = 2

value = -4.223

X[993] <= 0.01
mse = 0.08

samples = 22
value = -4.51

X[14] <= 0.024
mse = 0.097
samples = 3

value = -3.586

X[584] <= 0.275
mse = 0.353
samples = 23
value = 4.401

X[894] <= 0.062
mse = 0.298
samples = 2

value = 2.934

X[844] <= 0.09
mse = 0.066
samples = 4

value = 3.143

mse = 0.0
samples = 1

value = 1.906

X[136] <= 0.344
mse = 0.26

samples = 29
value = 5.062

X[618] <= 0.226
mse = 0.213
samples = 3

value = 3.634

X[672] <= 0.058
mse = 0.019
samples = 5
value = 5.7

X[291] <= 0.025
mse = 0.0

samples = 4
value = 6.423

X[425] <= 0.16
mse = 0.106
samples = 32
value = 4.144

X[450] <= 0.011
mse = 0.017
samples = 2

value = 3.241

mse = 0.0
samples = 1

value = 2.658

mse = 0.0
samples = 1

value = 2.521

X[330] <= 0.057
mse = 0.005
samples = 3
value = 4.15

mse = -0.0
samples = 1

value = 4.741

X[827] <= 0.094
mse = 0.001
samples = 2

value = 5.041

X[769] <= 0.087
mse = 0.007
samples = 2

value = 4.801

X[443] <= 0.063
mse = 0.0

samples = 2
value = 5.755

mse = 0.0
samples = 1

value = 5.828

X[339] <= 0.014
mse = 0.021
samples = 18
value = 5.966

X[681] <= 0.056
mse = 0.004
samples = 3

value = 5.495

mse = 0.0
samples = 1

value = 5.241

mse = -0.0
samples = 1

value = 5.462

X[449] <= 0.077
mse = 0.0

samples = 2
value = 5.354

mse = -0.0
samples = 1

value = 5.903

mse = 0.0
samples = 1

value = 5.058

mse = 0.0
samples = 1

value = 4.583

X[217] <= 0.175
mse = 0.055
samples = 22
value = -3.273

X[742] <= 0.07
mse = 0.016
samples = 3

value = -2.844

mse = 0.0
samples = 1

value = -4.069

X[478] <= 0.07
mse = 0.001
samples = 2

value = -4.177

X[509] <= 0.254
mse = 0.035
samples = 12
value = -3.965

X[188] <= 0.198
mse = 0.003
samples = 3

value = -4.273

mse = 0.0
samples = 1

value = -4.568

mse = -0.0
samples = 1

value = -4.597

mse = 0.0
samples = 1

value = -4.785

X[747] <= 0.126
mse = 0.031
samples = 20
value = -5.288

X[982] <= 0.055
mse = 0.005
samples = 2

value = -5.497

mse = -0.0
samples = 1

value = -5.856

X[349] <= 0.051
mse = 0.001
samples = 5

value = -5.707

mse = 0.0
samples = 1
value = -5.53

X[263] <= 0.213
mse = 2.348

samples = 1157
value = -0.175

X[271] <= 0.028
mse = 2.171

samples = 128
value = 1.641

X[328] <= 0.005
mse = 1.568
samples = 68
value = 2.982

X[245] <= 0.026
mse = 0.9

samples = 4
value = -1.822

X[156] <= 0.274
mse = 0.063
samples = 12
value = -4.137

mse = 0.0
samples = 1

value = -2.426

X[387] <= 0.188
mse = 0.078
samples = 15
value = -4.933

X[156] <= 0.688
mse = 0.02
samples = 7

value = -5.676

X[225] <= 0.178
mse = 0.5

samples = 59
value = -2.926

X[597] <= 0.115
mse = 0.678
samples = 3

value = -0.808

X[807] <= 0.024
mse = 0.12
samples = 9

value = -3.734

X[550] <= 0.037
mse = 0.172
samples = 25
value = -4.399

X[618] <= 0.083
mse = 0.508
samples = 25
value = 4.283

X[68] <= 0.063
mse = 0.297
samples = 5

value = 2.895

X[982] <= 0.105
mse = 0.428
samples = 32
value = 4.928

X[25] <= 0.078
mse = 0.14
samples = 9

value = 6.022

mse = 0.0
samples = 1

value = 0.234

mse = 0.0
samples = 1

value = 1.102

X[320] <= 0.011
mse = 0.146
samples = 34
value = 4.091

X[437] <= 0.045
mse = 0.005
samples = 2

value = 2.589

mse = 0.0
samples = 1

value = 2.678

mse = 0.0
samples = 1

value = 2.422

X[163] <= 0.066
mse = 0.069
samples = 4

value = 4.298

X[785] <= 0.041
mse = 0.018
samples = 4

value = 4.921

mse = 0.0
samples = 1

value = 5.594

X[607] <= 0.065
mse = 0.001
samples = 3

value = 5.779

X[652] <= 0.084
mse = 0.045
samples = 21
value = 5.898

X[867] <= 0.087
mse = 0.012
samples = 2

value = 5.351

X[430] <= 0.051
mse = 0.067
samples = 3

value = 5.537

X[425] <= 0.487
mse = 0.057
samples = 2

value = 4.821

X[465] <= 0.164
mse = 0.07

samples = 25
value = -3.221

mse = 0.0
samples = 1

value = -4.017

mse = 0.0
samples = 1

value = -3.539

X[383] <= 0.044
mse = 0.003
samples = 3

value = -4.141

X[745] <= 0.067
mse = 0.044
samples = 15
value = -4.027

mse = 0.0
samples = 1

value = -4.588

mse = 0.0
samples = 1

value = -3.687

mse = -0.0
samples = 1

value = -3.203

mse = 0.0
samples = 1

value = -4.673

X[914] <= 0.062
mse = 0.0

samples = 2
value = -4.582

mse = 0.0
samples = 1

value = -5.101

mse = 0.0
samples = 1

value = -5.286

X[86] <= 0.328
mse = 0.041
samples = 21
value = -5.264

X[745] <= 0.359
mse = 0.032
samples = 3

value = -5.617

X[599] <= 0.331
mse = 0.005
samples = 6

value = -5.678

mse = -0.0
samples = 1
value = -5.49

X[352] <= 0.02
mse = 2.626

samples = 1285
value = 0.006

X[786] <= 0.047
mse = 2.741
samples = 72
value = 2.716

X[790] <= 0.32
mse = 0.266
samples = 13
value = -4.005

X[156] <= 0.473
mse = 0.18

samples = 22
value = -5.169

X[597] <= 0.104
mse = 0.715
samples = 62
value = -2.823

X[833] <= 0.384
mse = 0.245
samples = 34
value = -4.223

mse = 0.0
samples = 1

value = 3.384

mse = 0.0
samples = 1

value = 4.412

X[626] <= 0.112
mse = 0.74

samples = 30
value = 4.052

X[882] <= 0.014
mse = 0.57

samples = 41
value = 5.168

mse = 0.0
samples = 1

value = -0.804

mse = -0.0
samples = 1

value = -2.631

X[994] <= 0.043
mse = 0.188
samples = 2

value = 0.668

mse = -0.0
samples = 1

value = -1.258

X[372] <= 0.059
mse = 0.256
samples = 36
value = 4.007

X[149] <= 0.249
mse = 0.016
samples = 2
value = 2.55

mse = 0.0
samples = 1

value = 5.891

mse = 0.0
samples = 1

value = 5.376

X[425] <= 0.328
mse = 0.141
samples = 8

value = 4.609

X[626] <= 0.023
mse = 0.007
samples = 4

value = 5.733

X[966] <= 0.11
mse = 0.066
samples = 23
value = 5.851

X[425] <= 0.478
mse = 0.186
samples = 5

value = 5.251

X[945] <= 0.194
mse = 0.09

samples = 26
value = -3.252

X[248] <= 0.052
mse = 0.07
samples = 4

value = -3.991

mse = 0.0
samples = 1

value = -4.244

mse = -0.0
samples = 1

value = -4.931

X[969] <= 0.086
mse = 0.06

samples = 16
value = -4.062

X[86] <= 0.246
mse = 0.059
samples = 2

value = -3.445

X[87] <= 0.196
mse = 0.002
samples = 3

value = -4.613

mse = 0.0
samples = 1

value = -4.408

mse = 0.0
samples = 1

value = -4.378

mse = 0.0
samples = 1

value = -4.531

X[835] <= 0.048
mse = 0.009
samples = 2

value = -5.193

mse = 0.0
samples = 1

value = -4.875

X[111] <= 0.235
mse = 0.053
samples = 24
value = -5.308

mse = -0.0
samples = 1

value = -4.333

mse = 0.0
samples = 1

value = -4.813

mse = -0.0
samples = 1

value = -4.264

X[7] <= 0.084
mse = 0.009
samples = 7

value = -5.651

mse = 0.0
samples = 1

value = -5.461

X[440] <= 0.024
mse = 3.001

samples = 1357
value = 0.15

X[156] <= 0.338
mse = 0.528
samples = 35
value = -4.737

X[833] <= 0.317
mse = 0.997
samples = 96
value = -3.319

X[778] <= 0.166
mse = 0.264
samples = 2

value = 3.898

X[150] <= 0.109
mse = 0.946
samples = 71
value = 4.696

X[449] <= 0.069
mse = 0.835
samples = 2

value = -1.718

X[423] <= 0.091
mse = 0.95
samples = 3

value = 0.026

mse = 0.0
samples = 1

value = -4.567

X[713] <= 0.093
mse = 0.349
samples = 38
value = 3.931

X[393] <= 0.058
mse = 0.066
samples = 2

value = 5.633

X[426] <= 0.118
mse = 0.377
samples = 12
value = 4.984

X[230] <= 0.094
mse = 0.141
samples = 28
value = 5.744

X[953] <= 0.027
mse = 0.151
samples = 30
value = -3.35

X[40] <= 0.106
mse = 0.118
samples = 2

value = -4.588

X[123] <= 0.134
mse = 0.097
samples = 18
value = -3.993

X[912] <= 0.053
mse = 0.009
samples = 4

value = -4.561

X[932] <= 0.017
mse = 0.006
samples = 2

value = -4.454

X[904] <= 0.033
mse = 0.028
samples = 3

value = -5.087

X[248] <= 0.286
mse = 0.088
samples = 25
value = -5.269

X[86] <= 0.408
mse = 0.075
samples = 2

value = -4.538

mse = 0.0
samples = 1
value = -4.21

mse = 0.0
samples = 1

value = -4.567

X[217] <= 0.152
mse = 0.012
samples = 8

value = -5.627

mse = 0.0
samples = 1

value = -5.197

X[156] <= 0.213
mse = 3.524

samples = 1392
value = 0.027

X[705] <= 0.106
mse = 2.023
samples = 98
value = -3.172

X[93] <= 0.067
mse = 2.039
samples = 73
value = 4.521

X[136] <= 0.164
mse = 4.668
samples = 4

value = -1.123

X[75] <= 0.038
mse = 0.473
samples = 40
value = 4.016

X[425] <= 0.356
mse = 0.333
samples = 40
value = 5.516

mse = 0.0
samples = 1

value = -3.473

mse = 0.0
samples = 1

value = 1.134

X[696] <= 0.003
mse = 0.238
samples = 32
value = -3.428

mse = -0.0
samples = 1

value = -1.118

X[945] <= 0.053
mse = 0.129
samples = 22
value = -4.097

X[338] <= 0.025
mse = 0.115
samples = 5

value = -4.834

X[349] <= 0.234
mse = 0.123
samples = 27
value = -5.215

X[245] <= 0.086
mse = 0.032
samples = 2

value = -4.388

X[190] <= 0.105
mse = 0.029
samples = 9
value = -5.58

mse = -0.0
samples = 1

value = -6.173

X[833] <= 0.093
mse = 4.054

samples = 1490
value = -0.183

X[477] <= 0.108
mse = 3.744
samples = 77
value = 4.228

X[425] <= 0.286
mse = 0.965
samples = 80
value = 4.766

X[437] <= 0.015
mse = 5.307
samples = 2
value = -1.17

X[9] <= 0.087
mse = 0.388
samples = 33
value = -3.358

X[566] <= 0.019
mse = 0.209
samples = 27
value = -4.233

X[716] <= 0.136
mse = 0.161
samples = 29
value = -5.158

X[993] <= 0.165
mse = 0.057
samples = 10
value = -5.639

X[136] <= 0.008
mse = 4.948

samples = 1567
value = 0.033

X[317] <= 0.049
mse = 1.91

samples = 82
value = 4.621

X[86] <= 0.221
mse = 0.497
samples = 60
value = -3.752

X[86] <= 0.492
mse = 0.179
samples = 39
value = -5.281

X[425] <= 0.038
mse = 5.792

samples = 1649
value = 0.262

X[86] <= 0.323
mse = 0.93

samples = 99
value = -4.354

X[86] <= 0.022
mse = 6.655

samples = 1748
value = 0.0

mse = 3.437
samples = 1128
value = 0.667

mse = 2.989
samples = 100
value = -1.476

mse = 3.593
samples = 64
value = 3.688

mse = 0.459
samples = 3

value = -2.162

mse = 0.536
samples = 61
value = -2.407

mse = 0.01
samples = 2

value = 1.198

mse = 0.165
samples = 21
value = -3.806

mse = 0.095
samples = 13
value = -4.429

mse = 0.841
samples = 45
value = -2.467

mse = 0.06
samples = 4

value = -4.365

mse = 0.0
samples = 1
value = 2.77

mse = 0.0
samples = 1

value = 0.832

mse = 0.319
samples = 34
value = -3.937

mse = 0.361
samples = 2

value = -2.058

mse = 0.089
samples = 9

value = -4.339

mse = 0.057
samples = 10
value = -5.055

mse = 0.048
samples = 8

value = -5.573

mse = 0.014
samples = 2

value = -4.937

mse = 0.0
samples = 6

value = -4.167

mse = -0.0
samples = 1
value = -3.2

mse = 0.195
samples = 9

value = -6.054

mse = 0.183
samples = 3

value = -4.879

mse = 0.021
samples = 11
value = -6.97

mse = 0.098
samples = 2

value = -6.135

mse = 0.0
samples = 2

value = -4.328

mse = 0.018
samples = 2

value = -5.409

mse = 0.0
samples = 1

value = -7.022

mse = 0.0
samples = 1

value = -6.959

mse = 1.718
samples = 24
value = -2.527

mse = 0.903
samples = 8

value = -4.295

mse = 0.213
samples = 4

value = -0.073

mse = 0.052
samples = 3

value = -1.668

mse = 0.371
samples = 8

value = -2.901

mse = 0.09
samples = 2

value = -4.382

mse = 0.269
samples = 17
value = -4.761

mse = -0.0
samples = 1

value = -2.596

mse = 0.209
samples = 9

value = -4.675

mse = 0.034
samples = 7

value = -5.416

mse = 0.051
samples = 6

value = -5.732

mse = 0.008
samples = 6

value = -6.201

mse = 0.941
samples = 26
value = 4.188

mse = 0.308
samples = 2

value = 1.858

mse = 0.0
samples = 1

value = 0.276

mse = 0.0
samples = 1
value = 0.59

mse = 0.442
samples = 24
value = 5.356

mse = 0.001
samples = 2

value = 3.419

mse = 0.044
samples = 5

value = 4.477

mse = 0.0
samples = 1

value = 5.371

mse = 0.031
samples = 6

value = 5.204

mse = 0.007
samples = 3

value = 5.815

mse = 0.051
samples = 10
value = 6.29

mse = 0.071
samples = 4

value = 5.762

mse = 0.02
samples = 3

value = 5.276

mse = 0.007
samples = 4

value = 5.688

X[437] <= 0.135
mse = 3.744

samples = 1228
value = 0.492

X[802] <= 0.074
mse = 4.917
samples = 67
value = 3.426

X[86] <= 0.074
mse = 0.919
samples = 63
value = -2.293

X[440] <= 0.427
mse = 0.23

samples = 34
value = -4.044

X[440] <= 0.168
mse = 1.047
samples = 49
value = -2.622

X[475] <= 0.155
mse = 0.938
samples = 2

value = 1.801

X[888] <= 0.088
mse = 0.506
samples = 36
value = -3.833

X[833] <= 0.385
mse = 0.2

samples = 19
value = -4.716

X[961] <= 0.006
mse = 0.106
samples = 10
value = -5.446

X[742] <= 0.023
mse = 0.115
samples = 7

value = -4.029

X[698] <= 0.013
mse = 0.451
samples = 12
value = -5.76

X[793] <= 0.103
mse = 0.124
samples = 13
value = -6.842

X[915] <= 0.015
mse = 0.301
samples = 4

value = -4.869

X[865] <= 0.015
mse = 0.001
samples = 2
value = -6.99

X[360] <= 0.144
mse = 2.1

samples = 32
value = -2.969

X[896] <= 0.017
mse = 0.767
samples = 7

value = -0.757

X[180] <= 0.047
mse = 0.666
samples = 10
value = -3.197

X[477] <= 0.183
mse = 0.5

samples = 18
value = -4.641

X[191] <= 0.03
mse = 0.267
samples = 16
value = -4.999

X[768] <= 0.007
mse = 0.085
samples = 12
value = -5.966

mse = 0.0
samples = 1

value = -1.044

mse = -0.0
samples = 1

value = -1.132

X[138] <= 0.028
mse = 1.256
samples = 28
value = 4.022

X[939] <= 0.071
mse = 0.025
samples = 2

value = 0.433

X[391] <= 0.288
mse = 0.675
samples = 26
value = 5.207

mse = 0.0
samples = 1

value = 2.182

X[487] <= 0.038
mse = 0.148
samples = 6

value = 4.626

X[959] <= 0.019
mse = 0.106
samples = 9

value = 5.407

X[66] <= 0.066
mse = 0.113
samples = 14
value = 6.139

X[966] <= 0.021
mse = 0.054
samples = 7

value = 5.512

X[878] <= 0.007
mse = 4.227

samples = 1295
value = 0.644

X[440] <= 0.264
mse = 1.376
samples = 97
value = -2.907

X[475] <= 0.077
mse = 1.78

samples = 51
value = -2.449

X[807] <= 0.024
mse = 0.577
samples = 55
value = -4.138

X[945] <= 0.003
mse = 0.596
samples = 17
value = -4.863

X[556] <= 0.034
mse = 0.573
samples = 25
value = -6.323

X[0] <= 0.008
mse = 1.201
samples = 6

value = -5.576

X[770] <= 0.007
mse = 2.582
samples = 39
value = -2.572

mse = 0.0
samples = 1

value = 2.761

mse = 0.0
samples = 1

value = 2.511

X[360] <= 0.278
mse = 1.038
samples = 28
value = -4.125

X[360] <= 0.294
mse = 0.418
samples = 28
value = -5.414

X[713] <= 0.23
mse = 0.002
samples = 2

value = -1.088

mse = -0.0
samples = 1

value = 0.159

X[477] <= 0.148
mse = 1.976
samples = 30
value = 3.782

X[248] <= 0.165
mse = 0.976
samples = 27
value = 5.095

X[83] <= 0.029
mse = 0.27

samples = 15
value = 5.095

X[627] <= 0.033
mse = 0.181
samples = 21
value = 5.93

mse = 0.0
samples = 1

value = -5.227

mse = 0.0
samples = 1

value = -4.215

mse = 0.0
samples = 1

value = -1.379

mse = 0.0
samples = 1

value = -1.616

X[440] <= 0.059
mse = 4.846

samples = 1392
value = 0.397

X[833] <= 0.221
mse = 1.868

samples = 106
value = -3.325

X[51] <= 0.17
mse = 1.095
samples = 42
value = -5.732

mse = -0.0
samples = 1

value = 0.943

X[360] <= 0.031
mse = 3.441
samples = 45
value = -2.972

X[290] <= 0.179
mse = 0.016
samples = 2

value = 2.636

X[362] <= 0.037
mse = 1.143
samples = 56
value = -4.769

X[80] <= 0.073
mse = 0.347
samples = 3

value = -0.672

X[328] <= 0.251
mse = 1.931
samples = 57
value = 4.404

X[329] <= 0.012
mse = 0.387
samples = 36
value = 5.582

X[680] <= 0.027
mse = 0.256
samples = 2

value = -4.721

mse = 0.0
samples = 1

value = 5.561

X[509] <= 0.041
mse = 0.014
samples = 2

value = -1.497

mse = -0.0
samples = 1

value = 0.328

mse = 0.0
samples = 1
value = -3.91

mse = 0.0
samples = 1
value = -3.83

X[833] <= 0.028
mse = 5.546

samples = 1498
value = 0.133

X[394] <= 0.085
mse = 2.082
samples = 43
value = -5.576

X[6] <= 0.07
mse = 4.576
samples = 47
value = -2.734

X[713] <= 0.086
mse = 1.913
samples = 59
value = -4.561

X[878] <= 0.01
mse = 1.663
samples = 93
value = 4.86

X[447] <= 0.166
mse = 23.664
samples = 3

value = -1.293

X[88] <= 0.034
mse = 0.75
samples = 3

value = -0.889

X[445] <= 0.045
mse = 0.002
samples = 2
value = -3.87

X[51] <= 0.026
mse = 6.334

samples = 1541
value = -0.026

X[360] <= 0.17
mse = 3.918

samples = 106
value = -3.751

X[180] <= 0.037
mse = 3.497
samples = 96
value = 4.668

X[599] <= 0.041
mse = 2.583
samples = 5

value = -2.081

X[360] <= 0.015
mse = 7.014

samples = 1647
value = -0.266

X[352] <= 0.028
mse = 5.595

samples = 101
value = 4.334

X[328] <= 0.058
mse = 8.083

samples = 1748
value = 0.0

Figure 4.4: Top: 2D embeddings for 20 newsgroups provided by CART trees of
depth 30 (left) and 7 (right). Each tree was trained using the free embedding (the
same one as in fig. 4.2) as a ground truth (i.e., direct fit). Bottom: corresponding
decision trees. It is clear that smaller (although more interpretable) CART trees
lead to significant distortion of the embeddings.

makes sense to apply some pruning. We use scikit-learn’s implementation of CART

regression trees and apply pre-pruning strategy using 30% of data as validation

set. Top plot in fig. 4.4 shows 2D embeddings obtained by CART for the same

problem as in fig. 4.2. For the top left figure, although the general structure is

preserved, we can clearly see artifacts in certain regions due to discrete nature

of CART. Substantially reducing the depth causes a significant increase in loss

(right plots). More importantly, bottom plot shows the visualization of the trees.

Even for relatively simple problem as 20 newsgroups, the final pruned tree in the

bottom left is very deep and contains > 2400 nodes. Moreover, for regression

problems, scikit-learn fits a separate tree for each output dimension and here we

show one tree. It is clear that interpretability becomes non-trivial in such cases

which practically limits this approach only to toy problems.



Chapter 5

Conclusion and Future Work

In this dissertation, we considered learning decision trees under loss functions

involving manifold regularization. This type of regularization appears in a range

of machine learning problems. Here, we covered two particular examples: semi-

supervised learning and nonlinear dimensionality reduction. Using these two ex-

amples, we have shown how to reformulate the problem in a way that is amenable

to iterative optimization. This gives us a generic algorithm to handle such type

of problems. By introducing auxiliary variables, we isolate the difficult part (the

tree optimization), and all the algorithm needs to do is to fit a regression tree

in alternation with coordinates step (e.g. solving sparse linear system or fitting

nonlinear embeddings). The tree fitting can be done reliably and efficiently using

the Tree Alternating Optimizing (TAO) algorithm, which guarantees stability and

allows us to use more powerful trees, such as sparse oblique trees.

In semi-supervised learning setting, our experimental results demonstrate that

the algorithm can train accurate and interpretable decision trees even in extreme

label scarcity situations. As for the nonlinear dimensionality reduction, we have

argued for the use of sparse oblique trees as a convenient choice of explanatory

low-dimensional mapping. By controlling the tree complexity (number of nodes

and nonzero parameters) via an ℓ1 penalty we achieve a range of solutions that

span a tradeoff of accuracy and interpretability. Inspecting the tree we obtain

insights about the data and about how high-dimensional instances are projected

to the embedding, which go beyond the insights obtained by simply visualizing
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the embedding in 2D. In the remaining part, we discuss several ideas for future

research projects.

This dissertation leads to several extensions and concerns for future research,

which we describe below:

Semi-supervised learning for forests Undoubtedly, most successful applica-

tions of decision trees were explored by combining (or ensembling) them into a

forest. These are among the most successful and widely recognized of all ma-

chine learning models: Random Forests, XGBoost, LightGBM, etc. Our proposed

semi-supervised framework can be generalized to other machine learning models.

Indeed, the target model (T (x;Θ)) appears in the algorithm in the tree-step, with

the form of a regression problem having the smoothed labels as ground-truth.

Obviously, we can use other regression models, such as random forests, gradient

boosted trees, neural networks, etc. This has immediate practical importance as

it can further expand practical usage of tree-based models.

Self-supervised learning with decision trees Representation learning with

decision trees have got some attention in recent years [44] due to huge success in

deep learning. The idea is to extract hierarchical representations of an input by

stacking several layers of tree ensembles (forests). We can extend our proposed

framework for this problem since the loss functions that are commonly used here

still involve manifold regularization (variations of it): triplet loss, contrastive loss,

etc. An extension might be non-trivial as the tree-step requires fitting multiple

stacked forests. However, the idea of the method of auxiliary coordinates (MAC)

[28, 29] can handle nested functions of arbitrary complexity, which can be applied

here.

Theoretical properties of manifold regularization with decision trees In

general, learning an optimal decision tree in most of its formulation is NP-hard

problem. As of now, we do not have any approximation guarantees for TAO, let

alone our proposed framework. Convergence of the algorithm also seems to be

vague. Quadratic penalty based optimization methods have certain convergence
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theorems which apply with mild conditions, such as smoothness of a function

and/or Lagrangian. However, applying such theorems is not possible here since

decision trees operate on a discrete space. Furthermore, manifold regularization

also assumes some degree of smoothness, which (generally) does not hold for tree-

based models. One can potentially apply a certain mathematical tools from the

theory of Reproducing kernel Hilbert space (RKHS) to study this issue.



Appendix A

Estimating Model Sizes and

Inference FLOPS for Forests

For each forest (ensemble of trees) in chapter 2, we report its model size by

counting the total number of parameters. Additionally, we report our estimate

of FLOPS (floating point operations) for inference to measure a prediction time

per input instance. Additional details on how to compute runtimes can be found

in [63].

Total number of parameters We count the parameters for each node of each

tree (decision nodes and leaves) and sum them up. In a decision node, we count

the number of nonzero weights (and the bias), which is 2 for an axis-aligned tree

and at most D + 1 for an oblique tree (where D is the number of features and

additional scalar to store the bias term). In a leaf, we count K for constant-label

leaves (where K is the output dimensionality, e.g. number of classes) and (D+1)K

if a leaf carries a linear model (e.g. a linear regressor or classifier). The exception

is a binary classification problem (K = 2), where a single D dimensional vector

(and the bias term) is sufficient to perform prediction in a leaf. Obviously, if the

resulting ensembles are constructed using sparse decision trees (as in the case of

TAO oblique trees), then the number of effective parameters in a node is reduced

to the number of non-zeros entries (an their indexes). The are some baselines

in our experiments where we do not have an access to the actual trees (due to
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their implementation). In such cases, we report an upper bound (marked with

parentheses) which is computed as follows: for each tree of maximum depth ∆

(but not necessarily complete), the maximum number of decision nodes and leaves

is max(N, 2∆)−1 and max(N, 2∆), respectively, where N is the number of training

points. We then count the number of parameters as above and multiply it times

the number of trees.

Inference FLOPS The inference time (FLOPS) for one instance along a tree is

equal to the number of nonzero parameters it encounters in the root-to-leaf path it

follows. For the entire forest, we simply sum an inference time of each individual

tree. We repeat this process for all training instances and then average over all of

them. In some situations where we do not have an access to the actual trees, we

assume each root-to-leaf path to have depth ∆.



Appendix B

Datasets

This section provides the description of datasets used in our experiments. All

data have dense features unless otherwise stated.

Letter English letter recognition task from UCI dataset [81]. Each letter image

was generated by randomly distorting pixel images of the 26 uppercase letters

from 20 different commercial fonts. The features are image features such as

edge counts and statistical moments. We use the last 4 000 samples as test

as in [117].

MNIST Handwritten digits recognition task [77]. The features are the pixel

grayscale values in [0,1] of each 28×28 digit image. We use the training/test

partition in [77].

fashion mnist [136] is another benchmark dataset used for object recognition.

It has similar characteristics as mnist (70k grayscale images of 28 × 28, 10

classes of different clothing items). We use this dataset primarily to com-

pare LapTAO with LapSVM and to visualize the trained trees. Since the

LapSVM has scalability issues for large number of points, we pick the subset

of fashion mnist (3 classes: “shirt”, “bag” and “ankle boot”) resulting in 18k

training points.

Char74k Image classification task [38] where each image contains a character in

one 64 classes (0–9, A–Z, a–z). We used the modified version of [117], as
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described in [141]: this uses images resized into a grayscale image of 8 × 8

pixels, and the features are the 64 pixel grayscale values. We split the dataset

randomly into 7 400 images as test and the rest as training.

RCV1 Text categorization dataset [79]. We obtained it from the LIBSVM multi-

class data collection1. The features are sparse normalized log TFIDF vectors.

SUSY Classification of particle detector collision events, available in the UCI

dataset [81]. We randomly select 90% of the instances for training and the

rest for test.

cpu act Predict the portion of time that CPUs run in user mode given different

system measures. We obtained it from the DELVE data collection2.

ailerons Aircraft control action prediction3. The attributes describe the status of

the aircraft and the target is the command given to its ailerons.

CT slice The attributes are histogram features (in polar space) of the Computer

Tomography (CT) slice. The task is to predict the relative location of the

image on the axial axis (in the range [0 180]). Available in the UCI Machine

Learning Repository [81].

YearPredictionMSD A subset of the Million Song Dataset [11]. The task is to

predict the age of a song from several song statistics given as metadata (tim-

bre average, timbre covariance). Obtained from the UCI Machine Learning

Repository [81].

ALOI (Amsterdam Library of Object Images) is a color image collection of one-

thousand small objects, recorded for scientific purposes. Images for each

object category are created by systematically changing viewing angle, illu-

mination angle, and illumination color (see details here). We obtained the

preprocessed form of the dataset from the LIBSVM multiclass data collec-

tion, where the extended color histogram with 128 dimensions is used to

1http://csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
2http://www.cs.toronto.edu/~delve/data/comp-activ/desc.html
3https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html

https://aloi.science.uva.nl/
http://csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
http://www.cs.toronto.edu/~delve/data/comp-activ/desc.html
https://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
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extract image features. We follow the same random partition of the data

(90% train and 10% test) as in [34]. As a preprocessing step, we subtract

the mean.

ODP (Open Directory Project) is the comprehensive human-edited directory

of the website categories. As of April 2013 there were over 1M categories

organized in a hierarchical ontology scheme. We use the preprocessed version

of it4 which uses 105k categories, as in [37, 86]. For each document, input

feature vector is bag-of-words (normalized) and the class label is the category

associated with the document.

WIKI–Small is another text categorization dataset obtained from [69]. It is

a subset of Large Scale Hierarchical Text Classification challenge (LSHTC)

[99]. For each document, a feature vector is bag-of-words and the class label

is the category associated with the document obtained from DMOZ and

DBpedia hierarchical ontology of the WEB.

PTB (Penn Treebank) is a standard dataset used to evaluate performances of

language models. We use the preprocessed version from [90] which is pub-

licly available online. The dataset consists of the plain text sentences in

English with approximately 1M tokens and 10k unique words (i.e. vocabu-

lary size). For the neural language modeling experiments, we proceed with

this dataset as is without further modification (i.e. section 2.3.5). But for

the section 2.3.5, we construct the dataset as follows. We filter out words

that appeared less than 10 times which leaves us with 5 970 unique words

(=number of classes). We construct a multiclass classification task as pre-

dicting the next word given previous 3 words. As for the input features, we

use a pretrained version of GloVe [101]5 to obtain a word representation in

vector space. We downloaded pretrained word vectors (∈ R
50) which were

trained on Wikipedia 2014 and Gigaword 5. We obtain a word vector for

each context word and simply concatenate them. For example, consider the

4http://hunch.net/~vw/odp_train.vw.gz, http://hunch.net/~vw/odp_test.vw.gz
5https://nlp.stanford.edu/software/

www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
http://hunch.net/~vw/odp_train.vw.gz
http://hunch.net/~vw/odp_test.vw.gz
https://nlp.stanford.edu/software/
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following sequence “black lives matter protest”. First, we extract 50 dimen-

sional GloVe vectors for “black”, “lives”, “matter” and then concatenate

them which results into 150 dimensional vector (i.e. this would be the total

number of input features). The ground truth label would be a single integer:

4011 (assuming the index of the word “protest” is 4011 in our vocabulary).

20 newsgroups . We select a subset of 6 classes: ’rec.motorcycles’, ’rec.sport.

hockey’, ’sci.crypt’, ’sci.space’, ’talk.politics.mideast’, ’talk.politics.guns’. The

resulting documents are collected and transformed into tf-idf representations

with top 1000 unigrams and bigrams. We use scikit-learn’s implementation

for tf-ifd and set min df= 3. Before that, we apply standard preprocessing

steps: removing non-alphanumeric symbols, English stopwords and head-

ers/footers from documents. To compute entropic affinities, we first project

the data into 20 dimensions using PCA.

Breast cancer We normalize features to have values between [0,1]. Entropic

affinities are computed directly on the original input features.
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[26] M. Á. Carreira-Perpiñán and P. Tavallali. Alternating optimization of deci-
sion trees, with application to learning sparse oblique trees. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
editors, Advances in Neural Information Processing Systems (NEURIPS),
volume 31, pages 1211–1221. MIT Press, Cambridge, MA, 2018.
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[64] O. İrsoy and E. Alpaydın. Unsupervised feature extraction with autoencoder
trees. Neurocomputing, 258:63–73, Oct. 4 2017.
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trees. J. Intelligent Information Systems, 49:461–486, 2017.

[79] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1: A new benchmark
collection for text categorization research. J. Machine Learning Research,
5:361–397, Apr. 2004.

[80] A. H. Li and A. Martin. Forest-type regression with general losses and
robust forest. In D. Precup and Y. W. Teh, editors, Proc. of the 34th Int.
Conf. Machine Learning (ICML 2017), pages 2091–2100, Sydney, Australia,
Aug. 6–11 2017.

https://cran.r-project.org/package=C50


91

[81] M. Lichman. UCI machine learning repository.
http://archive.ics.uci.edu/ml, 2013.

[82] J. Lin, C. Zhong, D. Hu, C. Rudin, and M. Seltzer. Generalized and scalable
optimal sparse decision trees. In H. Daumé III and A. Singh, editors, Proc.
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