
Boosted Sparse Oblique Decision Trees

Magzhan Gabidolla Arman Zharmagambetov Miguel Á. Carreira-Perpiñán
Dept. of Computer Science and Engineering, University of California, Merced

Introduction Boosted decision trees are widely used machine learning algorithms, achieving state-
of-the-art performance in many domains with little effort on hyperparameter tuning. Though much
work on boosting has focused on the theoretical properties and empirical variations, there has been
little progress on the tree learning procedure itself. To this day, boosting algorithms employ regular
axis-aligned trees as base learners optimized by CART-style greedy top-down induction. These
trees are known to be highly suboptimal due to their greedy nature, and they are not well-suited
to model the correlation of features due to their axis-aligned partition. In fact, these suboptimality
characteristics are commonly believed to be beneficial because of the weak learning criterion in
boosting.

In this work we consider boosting better optimized sparse oblique decision trees trained with the
recently proposed Tree Alternating Optimization (TAO) [1]. TAO generally finds much better ap-
proximate optima than CART-type algorithms due to the ability to monotonically decrease a desired
objective function over a decision tree. Our extensive experimental results demonstrate that boosted
sparse oblique TAO trees improve upon CART trees by a large margin, and achieve better test error
than other popular tree ensembles such as gradient boosting (XGBoost) and random forests. More-
over, the resulting TAO ensembles require far smaller number of trees.

Boosted TAO trees Many boosting algorithms exist, but in this work we are focusing on two
similar, effective, yet simple AdaBoost variations: AdaBoost.M1 and SAMME. Although TAO can
optimize the base learner’s objective in any boosting algorithm including AdaBoost.MH, LogitBoost
and gradient boosting, the purpose of this work is to provide convincing evidence that boosting better
optimized and more powerful trees can consistently improve over traditional tree learning methods.

In both AdaBoost.M1 and SAMME, the objective of the base learner is to minimize weighted mis-
classification loss, and here we will briefly describe how TAO operates to optimize that objective
function. TAO takes an initial tree of a predetermined structure, randomly initializes its parameters
and performs iterative updates on the node parameters to monotonically decrease the objective func-
tion. As the initial tree structure, we take a complete binary tree T of depth ∆ with nodes i and
parameters Θ = {θi}. Then, at each boosting step, TAO optimizes the following objective:

min
Θ

E(Θ) =
N∑

n=1

wnLn(yn,T(xn;Θ)) + λ
∑

nodes i

φ(θi) (1)

where L is 0/1 classification loss defined per data point xn with ground-truth label yn, and φ is the
regularization term that penalizes the parameters θi of each node. In this work, we use sparsity
penalty φ(θi) = ‖θi‖1 with hyperparameter λ ≥ 0 that controls the regularization severity. wn is
the weight per data point coming from the boosting algorithm and it satisfies the following condition:∑

n wn = 1 and wn ≥ 0. Note that we are including extra regularization term to the base learner’s
objective in AdaBoost.M1 and SAMME.

TAO is based on two theorems which we describe briefly here (refer to [1] for details) and adapt
them for the boosting framework. We define the reduced set Ri ⊂ {1, . . . , N} of node i (decision
node or leaf) as the training instances that reach i given the current tree parameters.

Separability condition For the nodes i and j that are not descendants of each other, we can rewrite
E equivalently as separable functions of θi and θj .



Reduced problem Given the separability condition, we can optimize a non-descendant set of nodes
independently. Optimizing eq. (1) over a leaf is equivalent to training its model parameters
θi on subset of points that reach the leaf, i.e. solving the original classification problem
on its reduced set. Since we are using a constant label leaf, this can be solved exactly by
majority vote.

Using the separability condition, we can rewrite eq. (1) to optimize a decision node i equiv-
alently as a function of θi:

min
Θ

E(Θ) = min
θi

Ei(θi) = min
θi

∑

n∈Ri

wnl(fi(xn; θi)) + λφi(θi) (2)

where Ri is the reduced set of that particular node. Since fi ∈ {right,left} can only have
two possible values, we define l(·) as an incurring loss of choosing right or left subtree.
Hence, we can rewrite eq. (2) as the following equivalent optimization problem:

min
θi

∑

n∈Ri

wnL(yn, fi(xn; θi)) + λφi(θi) (3)

where L is the same 0/1 classification loss mentioned before and yn ∈ {right,left} is a
“pseudolabel” indicating the child which gives a lower value of E for instance xn under
the current tree. The problem (3) above is a weighted 0/1 loss binary classification problem
and optimizing it is NP-hard problem [3, 4] even for unweighted case. However, we can
approximate it with a convex surrogate loss such as logistic loss (possibly with various
regularizations). We use LIBLINEAR [2] which also can handle weights per data point.

TAO algorithm processes the nodes of a tree in a breadth-first order (depth by depth) and repeatedly
trains a binary classifier (decision node) and a K-class classifier (leaf). All nodes at the same depth
are trained independently due to separability condition and in parallel.

Experiments Below we compare boosted TAO trees against boosted CART trees, XGBoost and
random forests as a function of the number of trees and training time. For all the models, we select
best hyperparameters using cross validation. Clearly, TAO forests significantly improve upon all the
other tree ensembles.

Letter R8 MNIST

50 100 150 200
0

1

2

3

4

5

Number of trees T

E
(%

)

50 100 150 200
0

2

4

6

8

Number of trees T
50 100 150 200

0

1

2

3

4

Number of trees T

0 20 40 60
1

2

3

4

Time (s)

E
te

st
(%

)

0 50 100
2

4

6

8

10

Time (s)
0 500 1000 1500

1.5

2

2.5

3

3.5

Time (s)

Figure 1: Comparison between different tree ensembles as a function of the number of trees T (top)
and training time (bottom). Solid lines - test errors, dashed lines - train errors. “M1” - AdaBoost.M1,
“S” - SAMME, RF - random forest. All methods except “*-CART” use parallel training with 8
threads.

2



References

[1] M. Á. Carreira-Perpiñán and P. Tavallali. Alternating optimization of decision trees, with appli-
cation to learning sparse oblique trees. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems
(NEURIPS), volume 31, pages 1211–1221. MIT Press, Cambridge, MA, 2018. 1

[2] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for
large linear classification. J. Machine Learning Research, 9:1871–1874, Aug. 2008. 2

[3] K.-U. Hoffgen, H. U. Simon, and K. S. Vanhorn. Robust trainability of single neurons. J.
Computer and System Sciences, 50(1):114–125, Feb. 1995. 2

[4] L. Pitt and L. G. Valiant. Computational limitations on learning from examples. Journal of the
ACM, 35(4):965–984, Oct. 1988. 2

3


