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Motivation and summary In recent years, large neural networks have been successfully applied
to various machine learning problems such as speech processing and computer vision. However,
these neural nets contain a huge amount of parameters, which makes it difficult to deploy them in
mobile phones or other devices with limited computation. This motivates the need for compressing
a neural net while minimally hurting its performance. Many algorithms have been proposed that
achieve significant compression based on pruning, quantization, low-rank decomposition and other
techniques. However, most of these algorithms require access to the original training set. This
imposes considerable resources in runtime and storage—for instance, modern image classification
datasets such as ImageNet contain millions of high-resolution images. In some applications, for
example in-device compression, it is desirable to do much faster (almost instant) compression.

In this work we focus on the framework of the “Learning-Compression” (LC) algorithm [1–3] be-
cause it can be applied to potentially any kind of compression type and combinations thereof. The
basic idea is to replace the original loss function with an approximate, simpler loss that does not
require access to the training set. The resulting optimization problem can be solved analytically or
using the LC algorithm. We show that we can still achieve significant compression but much faster.

Fast model compression Assume we have a large, reference model with P parameters that has
been trained on a loss L (e.g. cross-entropy on a given training set) to solve a task (e.g. classifica-
tion). That is, w = arg minw L(w). We define compression as finding a low-dimensional parame-
terization ∆(Θ) of w in terms of Q < P parameters Θ. We seek a Θ such that its corresponding
model has (locally) optimal loss. We define model compression as a constrained optimization prob-
lem: minw,Θ L̃(w) s.t. w = ∆(Θ), where L̃ is approximation of the original loss L which we
define later. Note that the original LC algorithm uses the true loss L, therefore it requires access to
dataset.

The decompression mapping ∆: Θ ∈ RQ → w ∈ RP maps a low-dimensional parameterization
to uncompressed model weights. The compression mapping Π(w) = arg minΘ ‖w −∆(Θ)‖2
behaves as its “inverse” and appears in the C step of the LC algorithm. Our framework includes
well-known types of compression (and combinations thereof), such as:

– Pruning defines w = ∆(θ) = θ where w is real and θ is constrained to have few nonzero
values. The compression mapping involves some kind of thresholding.

– Quantization uses a discrete mapping ∆ given by assigning each weight to one of K code-
book values. The compression mapping is given by a form of rounding if we use a fixed
codebook, such as binarization: {−1,+1} (or by k-means if we use an adaptive codebook).

– Low-rank compression defines ∆(U,V) = UVT , where the weights matrix W is con-
strained to be decomposed into low rank matrices U and V . The compression mapping is
given by the singular value decomposition (SVD) of W.

Approximation to the loss We approximate the original loss L using Taylor’s theorem.Assume
a given loss on a training set, e.g. the cross-entropy loss L(w) = −

∑
n yn log f(xn; w). Then

the loss function can be approximated as: L̃(w) = L0 + gT (w −w) + 1
2 (w −w)TH(w −w),

where L0 = L(w) is the loss value of the reference model, g its gradient, H its Hessian and w are
the weights of the reference model (w need not be an exact minimizer, so its gradient need not be
zero). This approximation is very good near w but degrades progressively as we go away from it.
Therefore we have to expect that the resulting solution will not be as accurate as the original LC
algorithm. But this is the price we need to pay in order to get a fast compression. H can be the full
Hessian, diagonal, block diagonal, sparse or even zero if we use the first order approximation; here



we focus on the diagonal approximation. Then the above loss approximation takes the following
form (by neglecting constant term L0): L̃(w) =

∑P
i=1

[
gi(wi − wi) + 1

2hi(wi − wi)
2
]
, where gi

and hi are the elements of the gradient vector and diagonal elements of the Hessian, respectively.

Fast “Learning-Compression” (LC) algorithm This follows from using a penalty method (for
simplicity, we describe the quadratic penalty) and alternating optimization, with the goal of separat-
ing the machine learning part (loss L) from the compression part (∆). This results in an algorithm
that alternates two generic steps while slowly driving the penalty parameter µ→∞:

• L (learning) step: minw

∑P
i=1

[
gi(wi − wi) + 1

2hi(wi − wi)
2
]

+ µ
2 ‖w −∆(Θ)‖2. It is

a separable quadratic optimization whose solution is wi = (hiwi+µ∆i(θ)−gi)/(hi+µ).
Note that in the original LC algorithm this step requires access to the training set and the
neural net, which is computationally very costly (and requires SGD optimization in a GPU).
Now the L step is data-independent and vastly faster.

• C (compression) step: minΘ ‖w −∆(Θ)‖2 ⇔ Θ = Π(w). This means finding the best
(lossy) compression of w in the `2 sense. This step is identical to the original LC algorithm.
It is independent of the loss, training set and task. It can be solved by calling a compression
mapping (e.g. thresholding, SVD, etc.) corresponding to the desired compression type.

Analytical solution of the optimization problem In some particular cases the exact solution
of the constrained optimization problem can be obtained analytically (without using iterative al-
gorithms). For example, in the case of pruning [3], the optimization problem takes the form:
minw

∑P
i=1

[
gi(wi − wi) + 1

2hi(wi − wi)
2
]

s.t. ‖w‖0 ≤ κ. Its exact solution is given by pick-
ing the weights having the largest values of αi = giwi − 1

2hiw
2
i − g2i /(2hi) and setting them to

wi = wi− gi/hi. If g = 0 this solution corresponds to the Optimal Brain Damage algorithm of [4].

Another example is a problem of weight binarization: minw

∑P
i=1

[
gi(wi − wi) + 1

2hi(wi − wi)
2
]

s.t. w1, . . . , wP ∈ {−1,+1}. The problem separates over the weights and can be solved for each wi
by enumeration (try −1 and +1 and pick the one which gives the lowest value of the loss).

Experiments The figure shows compression results (as a tradeoff curve of error vs compression
level) for the VGG-13 neural nets [5] on CIFAR-10. Currently, Tensorflow (and some other deep
learning frameworks) are not able to provide just the diagonal of the Hessian. Therefore, we estimate
it using the Gauss-Newton approximation. As we can see the fast LC algorithm is able to achieve
low test error as long as we don’t compress much. The original LC shows better results on all
experiments but its runtime is about 6 hours, whereas the fast compression runs only about 2 minutes
for quantization, 1 second for pruning.
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Figure 1: Error-compression curves for VGG-13 on CIFAR-10: quantization (left), pruning (right).
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